Background: Congenital cataract is the leading cause of blindness in children worldwide. Approximately half of all congenital cataracts have a genetic basis. Protein aggregation is the single most important factor in cataract formation.
Methods: A four-generation Chinese family diagnosed with autosomal dominant congenital cataracts and microphthalmia was recruited at the Shengjing Hospital of China Medical University. Genomic DNA was extracted from the peripheral blood of the participants. All coding exons and flanking regions of seven candidate genes (CRYAA, CRYBA4, CRYBB2, CRYGC, GJA8, MAF, and PITX3) were amplified and sequenced. Restriction fragment length polymorphism (RFLP) assays were performed to confirm the candidate causative variant, c.35G > T in the CRYAA gene. We constructed pcDNA3.1(+)-CRYAA expression plasmids containing either the wild-type or the R12L mutant alleles and respectively transfected them into HEK293T cells and into HeLa cells. Western blotting was performed to determine protein expression levels and protein solubility. Immunofluorescence was performed to determine protein sub-cellular localization.
Results: A heterozygous variant c.35G > T was identified in exon 1 of CRYAA, which resulted in a substitution of arginine to leucine at codon 12 (p.R12L). The nucleotide substitution c.35G > T was co-segregated with the disease phenotype in the family. The mutant R12L-CRYAA in HEK293T cells showed a significant increase in the expression level of the CRYAA protein compared with the wild-type cells. Moreover, a large amount of the mutant protein aggregated in the precipitate where the wild-type protein was not detected. Immunofluorescence studies showed that the overexpressed mutant CRYAA in HeLa cells formed large cytoplasmic aggregates and aggresomes.
Conclusions: In summary, we described a case of human congenital cataract and microphthalmia caused by a novel mutation in the CRYAA gene, which substituted an arginine at position 12 in the N-terminal region of αA-crystallin. The molecular mechanisms that underlie the pathogenesis of human congenital cataract may be characterized by the prominent effects of the p.R12L mutation on αA-crystallin aggregation and solubility. Our study also expands the spectrum of known CRYAA mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6194747 | PMC |
http://dx.doi.org/10.1186/s12881-018-0695-5 | DOI Listing |
Genes (Basel)
January 2025
Ophthalmology Department, Federal University of São Paulo, São Paulo 04039-032, Brazil.
Background: Nance-Horan syndrome (NHS) is a rare, frequently underdiagnosed, X-linked disease caused by mutations in the NHS gene. In males, it causes bilateral dense pediatric cataracts, dental anomalies, and facial dysmorphisms. Females traditionally have a more subtle phenotype with discrete lens opacities as an isolated feature.
View Article and Find Full Text PDFVision (Basel)
January 2025
Sztárai Institute, University of Tokaj, 3950 Sárospatak, Hungary.
Retinitis pigmentosa (RP) encompasses inherited retinal dystrophies, appearing either as an isolated eye condition or as part of a broader systemic syndrome, known as syndromic RP. In these cases, RP includes systemic symptoms impacting other organs, complicating diagnosis and management. This review highlights key systemic syndromes linked with RP, such as Usher, Bardet-Biedl, and Alström syndromes, focusing on genetic mutations, inheritance, and clinical symptoms.
View Article and Find Full Text PDFOphthalmic Genet
January 2025
Department of Ophthalmology, Hospital das Clínicas - Empresa Brasileira de Serviços Hospitalares, Federal University of Pernambuco, Recife, Brazil.
Background: Oculodentodigital dysplasia (ODDD) is a rare syndrome that causes a constellation of facial, ophthalmic, dental, and limb abnormalities. Variants in the gap junction alpha-1 () gene have been described in patients with ODDD. Hereby we present the ocular manifestations in a patient with recessive ODDD due to a novel homozygous frameshift variant in .
View Article and Find Full Text PDFInt Ophthalmol
January 2025
Cleveland Clinic Abu Dhabi, Eye Institute, Abu Dhabi, United Arab Emirates.
Purpose: To describe the safety and assess the feasibility of using intracameral cefuroxime sodium (Aprokam®) during congenital cataract surgery as a preventive measure for endophthalmitis.
Design: Monocentric, prospective, observational pilot study.
Setting: San Giuseppe Hospital, University of Milan, Milan, Italy.
Neuromuscul Disord
December 2024
University of Florida College of Medicine - Jacksonville, Jacksonville, FL, USA.
Sengers Syndrome (SS) is a rare autosomal recessive mitochondrial disorder caused by mutations in the acylglycerol kinase (AGK) gene on chromosome 7, also known as cardiomyopathic mitochondrial DNA depletion syndrome (MTDPS10). This disorder disrupts mitochondrial DNA function and energy metabolism, presenting with symptoms such as congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. Previous research has shown SS affects oxidative phosphorylation and mitochondrial respiration, implicating the TIM22 complex and carrier import.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!