This work presents a study of the traction, normal and stall forces in a two-sided planar actuator with orthogonal planar windings and a mover that comprises two cars magnetically coupled to each other through two pairs of permanent magnets (PMs). There is no ferromagnetic armature core because of the permanent magnets array in the mover and orthogonal traction forces can be generated in order to move both cars jointly in any direction on a plane. The stall force is the minimal force necessary to break up the magnetic coupling between the two cars. When one of the cars is subjected to an external force through the - or -axis, the cars can become out of alignment with respect to each other and the planar actuator cannot work properly. The behavior of the forces was modelled by numerical and analytical methods and experimental results were obtained from tests carried out on a prototype. The average sensitivity of the measured static propulsion planar force along either axis is 4.48 N/A. With a 20-mm displacement between the cars along the direction of the -axis and no armature current, a magnetic stall force of 17.26 N is produced through the same axis in order to restore the alignment of the two cars.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6211012PMC
http://dx.doi.org/10.3390/s18103526DOI Listing

Publication Analysis

Top Keywords

planar actuator
12
normal stall
8
stall forces
8
orthogonal planar
8
planar windings
8
permanent magnets
8
stall force
8
cars
7
planar
6
force
5

Similar Publications

Short-term outcomes of mesh-suture repair in the treatment of ventral hernias: a single-center study.

Surg Endosc

January 2025

Division of Minimally Invasive and Bariatric Surgery, Penn State Health Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA, 17033, USA.

Background: Defect closure with mesh suture is a novel technique for hernia repair. Originally described as the construction of lightweight macroporous polypropylene mesh strips as a suture material, it is now available as an FDA-approved product. Mesh suture better distributes tensile forces and reduces fascial tearing compared to traditional suture but requires less implanted material and tissue dissection compared to planar mesh.

View Article and Find Full Text PDF

This paper reviews and compares electrostatically actuated MEMS (micro-electro-mechanical system) arrays for light modulation and light steering in which transmission through the substrate is required. A comprehensive comparison of the technical achievements of micromirror arrays and microshutter arrays is provided. The main focus of this paper is MEMS micromirror arrays for smart glass in building windows and façades.

View Article and Find Full Text PDF

In conventional nondispersive infrared (NDIR) gas sensors, a wide-spectrum IR source or detector must be combined with a narrowband filter to eliminate the interference of nontarget gases. Therefore, the multiplexed NDIR gas sensor requires multiple pairs of narrowband filters, which is not conducive to miniaturization and integration. Although plasmonic metamaterials or multilayer thin-film structures are widely applied in spectral absorption filters, realizing high-performance, large-area, multiband, and compact filters is rather challenging.

View Article and Find Full Text PDF

Unlocking Micro-Origami Energy Storage.

ACS Appl Energy Mater

December 2024

Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09107 Chemnitz, Germany.

Transforming thin films into high-order stacks has proven effective for robust energy storage in macroscopic configurations like cylindrical, prismatic, and pouch cells. However, the lack of tools at the submillimeter scales has hindered the creation of similar high-order stacks for micro- and nanoscale energy storage devices, a critical step toward autonomous intelligent microsystems. This Spotlight on Applications article presents recent advancements in micro-origami technology, focusing on shaping nano/micrometer-thick films into three-dimensional architectures to achieve folded or rolled structures for microscale energy storage devices.

View Article and Find Full Text PDF

Multispectral camouflage materials that provide adaptable features across a wide spectrum, from visible light to radar frequencies, play a vital role in sophisticated multi-band electromagnetic (EM) applications. However, conventional single-band stealth is difficult to align with the growing demand for multi-band compatibility and intelligent adaptation. Herein, we report the design and synthesis of cephalopod-inspired MXene-integrated cholesteric liquid crystal elastomers (MXene-CLCEs) with multispectral camouflage capability, which was fabricated through in situ thiol-acrylate Michael addition and free-radical photopolymerization of CLCE precursor and isocyanate-mediated robust covalent chemical bonding of MXene nanocoating at the interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!