Salinity is one of the major abiotic stresses which affect plant growth and productivity by imposing dual stress, ionic and osmotic stress, on plants. Halophytes which are adapted to complete their life cycle in saline soil keep the transcript expression of stress-responsive genes constitutively higher in the optimum growth environments, which can be further increased by several folds under stress conditions. The transcript expression of SbNHX1 gene, cloned from a leafless succulent halophyte Salicornia brachiata, was up-regulated under salinity stress, but its transcriptional regulation has not been studied so far. In the present study, a 1727 bp putative promoter (upstream to translation start site) of the SbNHX1 gene was cloned using a genome walking method. The bioinformatics analysis identified important stress-responsive cis-regulatory motifs, GT1, MBS, LTR and ARE, in addition to two leaf-specific enhancer motifs. The GUS expression analysis of stable transgenic tobacco plants, transformed with a transcriptional fusion of GUS with the full SbNHX1 promoter (NP1) or any of its five deletion fragments (NP2 to NP6), showed that the deletion of two enhancer motifs resulted in the sudden decrease in GUS expression in leaves but not in the stem or root tissues. In contrast, under salinity stress, the higher induction of GUS expression observed in NP1 and NP2 was correlated by the presence of salt-inducible GT1- and MBS-motifs which is distributed only in NP1 and NP2 deletion promoter fragments. Finally, we concluded that the SbNHX1 promoter has a 624 bp (-1727 to -1103 bp) regulatory region which contains the two leaf-specific enhancer motifs and salinity stress-inducible GT-1 and MBS motifs. We suggest the SbNHX1 gene promoter and fragments as a candidate alternative promoter/s for crop engineering for better stress tolerance, which can be amended according to the desired level of expression needed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2018.10.039DOI Listing

Publication Analysis

Top Keywords

sbnhx1 gene
12
enhancer motifs
12
gus expression
12
gene promoter
8
halophyte salicornia
8
salicornia brachiata
8
transcript expression
8
gene cloned
8
salinity stress
8
leaf-specific enhancer
8

Similar Publications

Article Synopsis
  • * The sorghum variety SSG 59-3 shows resilience to salt stress by enhancing antioxidant activities and protecting cell integrity, while also increasing proline, ascorbic acid, and carbohydrate levels.
  • * Salinity alters ion balances and gene expression related to starch synthesis in sorghum, with SSG 59-3 effectively managing excess sodium ions and maintaining lower cytosolic Na/K ratios, highlighting its potential for stress alleviation.
View Article and Find Full Text PDF

Combined NaCl and DTT diminish harmful ER-stress effects in the sorghum seedlings CSF 20 variety.

Plant Physiol Biochem

February 2020

Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, 60440-554, Brazil. Electronic address:

Plants have developed mechanisms to avoid harmful effects of Na accumulation, such as the signaling pathway of carrier proteins Na/H (NHX) and salt overly sensitive (SOS). Besides, endoplasmic reticulum (ER) could integrate plant cell response. Thus, we aimed to understand the effects of ER homeostasis impairment, and its relationship to salt stress during early stages of the Sorghum bicolor CSF 20 a salt-tolerant variety.

View Article and Find Full Text PDF

Salinity is one of the major abiotic stresses which affect plant growth and productivity by imposing dual stress, ionic and osmotic stress, on plants. Halophytes which are adapted to complete their life cycle in saline soil keep the transcript expression of stress-responsive genes constitutively higher in the optimum growth environments, which can be further increased by several folds under stress conditions. The transcript expression of SbNHX1 gene, cloned from a leafless succulent halophyte Salicornia brachiata, was up-regulated under salinity stress, but its transcriptional regulation has not been studied so far.

View Article and Find Full Text PDF

Cumin is an annual, herbaceous, medicinal, aromatic, spice glycophyte that contains diverse applications as a food and flavoring additive, and therapeutic agents. An efficient, less time consuming, Agrobacterium-mediated, a tissue culture-independent in planta genetic transformation method was established for the first time using cumin seeds. The SbNHX1 gene, cloned from an extreme halophyte Salicornia brachiata was transformed in cumin using optimized in planta transformation method.

View Article and Find Full Text PDF

Jatropha is an important second-generation biofuel plant. Salinity is a major factor adversely impacting the growth and yield of several plants including Jatropha. SbNHX1 is a vacuolar Na⁺/H⁺ antiporter gene that compartmentalises excess Na⁺ ions into the vacuole and maintains ion homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!