Classically, endoplasmic reticulum (ER) retention signals in secreted integral membrane proteins impose the requirement to assemble with other cognate subunits to form functional assemblies before they can exit the ER. We report that GluK5 has two ER retention signals in its cytoplasmic C-terminus: an arginine-based signal and a di-leucine motif previously thought to be an endocytic motif. GluK5 assembles with GluK2, but surprisingly GluK2 association does little to block the ER retention signals. We find instead that the ER retention signals are blocked by two proteins involved in intracellular trafficking, SAP97 and CASK. We show that SAP97, in the presence of CASK and the receptor complex, assumes an extended conformation. In the extended conformation, SAP97 makes its SH3 and GuK domains available to bind and sterically mask the ER retention signals in the GluK5 C-terminus. SAP97 and CASK are also necessary for sorting receptor cargoes into the local dendritic secretory pathway in neurons. We show that the ER retention signals of GluK5 play a vital role in sorting the receptor complex in the local dendritic secretory pathway in neurons. These data suggest a new role for ER retention signals in trafficking integral membrane proteins in neurons. SIGNIFICANCE: We present evidence that the ER retention signals in the kainate receptors containing GluK5 impose a requirement for sorting into local dendritic secretory pathways in neurons, as opposed to traversing the somatic Golgi apparatus. There are two ER retention signals in the C-terminus of GluK5. We show that both are blocked by physical association with SAP97 and CASK. The SH3 and GuK domains of SAP97, in the presence of CASK, bind directly to each ER retention signal and form a complex. These results support an entirely new function for ER retention signals in the C-termini of neuronal receptors, such as NMDA and kainate receptors, and define a mechanism for selective entry of receptors into local secretory pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamcr.2018.10.009 | DOI Listing |
Mol Biol Cell
January 2025
MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
Nearly all mitochondrial proteins are imported into mitochondria from the cytosol. How nascent mitochondrial precursors acquire and sustain import-competence in the cytosol under normal and stress conditions is incompletely understood. Here, we show that under normal conditions, the Hsc70 and Hsp90 systems interact with and redundantly minimize precursor degradation.
View Article and Find Full Text PDFCureus
December 2024
Orthopaedic Surgery, Ng Teng Fong General Hospital, Singapore, SGP.
This case report describes a 70-year-old male presenting with limb weakness, urinary retention and tandem cervical and lumbar spinal stenosis with complicating white cord syndrome, a rare reperfusion injury post decompression surgery. Initially admitted following an unwitnessed fall, the patient's neurological examination indicated that progressive weakness of the limbs and sensory loss etiology is cervical and lumbar spondylosis with severe spinal canal stenosis, confirmed by imaging. Due to rapid deterioration, he underwent C5 corpectomy, cervical decompression and fusion.
View Article and Find Full Text PDFJ Health Organ Manag
January 2025
Department of Pedagogical, Curricular and Professional Studies, Faculty of Social Science, University of Gothenburg, Goteborg, Sweden.
Purpose: The purpose of this study is to investigate how mentors can convince young, certified, inexperienced employees to remain in a healthcare organisation, and how mentors address "stay or quit" when mentees' lived experiences reveal feelings of insufficiency as crisis in their daily work. We explore how turnover is affected by the mentors' and mentees' discussions within the manager's domain.
Design/methodology/approach: Within the framework of crisis management, the study employs qualitative content analysis of 21 interview responses from mentors, mentees and managers.
Cell Signal
January 2025
Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:
KDELR1, a constituent of the KDEL endoplasmic reticulum protein retention receptors family, is implicated in immune responses and cancers progression. In this study, we delineate the clinicopathological significance and oncogenic role of KDELR1 in head and neck squamous cell carcinoma (HNSCC) through a comprehensive multi-omics approach. KDELR1 expression is correlated with tumor grade, tumor stage, lymph node metastasis, clinical stage and poor prognosis in HNSCC.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xi Cheng District, Beijing, 100050, China.
Canopy family proteins are highly sequence-conserved proteins with an N-terminal hydrophobic signal sequence, a unique pattern of six cysteine residues characteristic of the saposin-like proteins, and a C-terminal putative endoplasmic reticulum retention signal sequence. At present, the known canopy family proteins are canopy fibroblast growth factor signaling regulator 1 (CNPY1), CNPY2, CNPY3, and CNPY4. Despite similar structures, canopy family proteins regulate complex signal networks to participate in various biological processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!