Muscle patterns underlying voluntary modulation of co-contraction.

PLoS One

Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy.

Published: April 2019

Manipulative actions involving unstable interactions with the environment require controlling mechanical impedance through muscle co-contraction. While much research has focused on how the central nervous system (CNS) selects the muscle patterns underlying a desired movement or end-point force, the coordination strategies used to achieve a desired end-point impedance have received considerably less attention. We recorded isometric forces at the hand and electromyographic (EMG) signals in subjects performing a reaching task with an external disturbance. In a virtual environment, subjects displaced a cursor by applying isometric forces and were instructed to reach targets in 20 spatial locations. The motion of the cursor was then perturbed by disturbances whose effects could be attenuated by increasing co-contraction. All subjects could voluntarily modulate co-contraction when disturbances of different magnitudes were applied. For most muscles, activation was modulated by target direction according to a cosine tuning function with an offset and an amplitude increasing with disturbance magnitude. Co-contraction was characterized by projecting the muscle activation vector onto the null space of the EMG-to-force mapping. Even in the baseline the magnitude of the null space projection was larger than the minimum magnitude required for non-negative muscle activations. Moreover, the increase in co-contraction was not obtained by scaling the baseline null space projection, scaling the difference between the null space projections in any block and the projection of the non-negative minimum-norm muscle vector, or scaling the difference between the null space projections in the perturbed blocks and the baseline null space projection. However, the null space projections in the perturbed blocks were obtained by linear combination of the baseline null space projection and the muscle activation used to increase co-contraction without generating any force. The failure of scaling rules in explaining voluntary modulation of arm co-contraction suggests that muscle pattern generation may be constrained by muscle synergies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195298PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205911PLOS

Publication Analysis

Top Keywords

null space
32
space projection
16
baseline null
12
space projections
12
muscle
9
muscle patterns
8
patterns underlying
8
voluntary modulation
8
co-contraction
8
isometric forces
8

Similar Publications

In short-term ordered recall tasks, phonological similarity impedes item and order recall, while semantic similarity benefits item recall with a weak or null effect on order recall. Ishiguro and Saito recently suggested that these contradictory findings were due to an inadequate assessment of semantic similarity. They proposed a novel measure of semantic similarity based on the distance between items in a three-dimensional space composed of the semantic dimensions of valence, arousal, and dominance.

View Article and Find Full Text PDF

A characteristic feature of redundancy in the motor system is the ability to compensate for the failure of individual motor elements without affecting task performance. In this study, we examined the pattern and variability in error compensation between motor elements during a virtual task. Participants performed a redundant cursor control task with finger movements.

View Article and Find Full Text PDF

Many theories of time perception propose the existence of an internal pacemaker, and studies across behavioral, physiological, and neuroscience fields have explored this concept. Specifically, Spontaneous Motor Tempo (SMT), the most comfortable and natural tapping tempo for each individual, is thought to reflect this internal pacemaker's tempo. Changes in heart rate are also linked to time estimation, while Individual Alpha Frequency (IAF), the peak in the alpha range (8-13 Hz) observed in EEG, is reported to reflect the brain's temporal processing.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is an invaluable method of choice for anatomical and functional in vivo imaging of the brain. Still, accurate delineation of the brain structures remains a crucial task of MR image evaluation. This study presents a novel analytical algorithm developed in MATLAB for the automatic segmentation of cerebrospinal fluid (CSF) spaces in preclinical non-contrast MR images of the mouse brain.

View Article and Find Full Text PDF

Plants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!