Bone morphogenetic protein 2 (BMP2) bioprinted on biological matrix induces osseous regeneration in large calvarial defects in rabbits, both uncomplicated and scarred. Healing in unfavorable defects scarred from previous infection is decreased due in part to the lack of vascularity. This impedes the access of mesenchymal stem cells, key to osseous regeneration and the efficacy of BMP2, to the wound bed. The authors hypothesized that bioprinted vascular endothelial growth factor (VEGF) would augment the osseous regeneration achieved with low dose biopatterned BMP2 alone. Thirteen New Zealand white rabbits underwent subtotal calvariectomy using a dental cutting burr. Care was taken to preserve the underlying dura. A 15 mm × 15 mm flap of bone was cut away and incubated in a 1 × 108 cfu/mL planktonic solution of S aureus before reimplantation. After 2 weeks of subsequent infection the flap was removed and the surgical wound debrided followed by 10 days of antibiotic treatment. On postoperative day 42 the calvarial defects were treated with acellular dermal matrix bioprinted with nothing (control), VEGF, BMP2, BMP2/VEGF combined. Bone growth was analyzed with serial CT and postmortem histology. Defects treated with BMP2 (BMP2 alone and BMP2/VEGF combination) showed significantly greater healing than control and VEGF treated defect (P < 0.5). Vascular endothelial growth factor treated defect demonstrated less healing than control and VEGF/BMP2 combination treatments achieved less healing than BMP2 alone though these differences were nonsignificant. Low dose BMP2-patterned acellular dermal matrix improves healing of scarred calvarial defects. Vascular endothelial growth factor at the doses applied in this study failed to increase healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SCS.0000000000004779 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!