Pomeranchuk Instability of Composite Fermi Liquids.

Phys Rev Lett

Department of Physics, California State University Los Angeles, Los Angeles, California 90032, USA.

Published: October 2018

Nematicity in quantum Hall systems has been experimentally well established at excited Landau levels. The mechanism of the symmetry breaking, however, is still unknown. Pomeranchuk instability of Fermi liquid parameter F_{ℓ}≤-1 in the angular momentum ℓ=2 channel has been argued to be the relevant mechanism, yet there are no definitive theoretical proofs. Here we calculate, using the variational Monte Carlo technique, Fermi liquid parameters F_{ℓ} of the composite fermion Fermi liquid with a finite layer width. We consider F_{ℓ} in different Landau levels n=0, 1, 2 as a function of layer width parameter η. We find that unlike the lowest Landau level, which shows no sign of Pomeranchuk instability, higher Landau levels show nematic instability below critical values of η. Furthermore, the critical value η_{c} is higher for the n=2 Landau level, which is consistent with observation of nematic order in ambient conditions only in the n=2 Landau levels. The picture emerging from our work is that approaching the true 2D limit brings half-filled higher Landau-level systems to the brink of nematic Pomeranchuk instability.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.121.147601DOI Listing

Publication Analysis

Top Keywords

pomeranchuk instability
16
landau levels
16
fermi liquid
12
layer width
8
landau level
8
n=2 landau
8
landau
6
pomeranchuk
4
instability composite
4
fermi
4

Similar Publications

The Stoner instability remains a cornerstone for understanding metallic ferromagnets. This instability captures the interplay of Coulomb repulsion, Pauli exclusion, and twofold fermionic spin degeneracy. In materials with spin-orbit coupling, this fermionic spin is generalized to a twofold degenerate pseudospin which is typically believed to have symmetry properties as spin.

View Article and Find Full Text PDF

Collective effects in an incompressible electronic liquid.

Natl Sci Rev

June 2023

Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

Starting from Landau's kinetic equation, we show that an electronic liquid in = 2, 3 spatial dimensions depicted by a Landau-type effective theory will become incompressible on condition that the Landau parameters satisfy either (i) [Formula: see text] or (ii) [Formula: see text]. Condition (i) is the Pomeranchuk instability in the current channel and suggests a quantum spin liquid (QSL) state with a spinon Fermi surface; while condition (ii) means that the strong repulsion in the charge channel leads to a conventional charge and thermal insulator. In the collisionless regime (ωτ ≫ 1) and the hydrodynamic regime (ωτ ≪ 1), the zero and first sound modes have been studied and classified by symmetries, including the longitudinal and transverse modes in = 2, 3 and the higher angular momentum modes in = 3.

View Article and Find Full Text PDF

We explore the interplay between nematicity (spontaneous breaking of the sixfold rotational symmetry), superconductivity, and non-Fermi liquid behavior in partially flat-band (PFB) models on the triangular lattice. A key result is that the nematicity (Pomeranchuk instability), which is driven by many-body effect and stronger in flat-band systems, enhances superconducting transition temperature in a systematic manner on thedome. There, a plausiblesx2+y2-dx2-y2-dxy-wave symmetry, in place of the conventionaldx2-y2-wave, governs the nematicity-enhanced pairing with a sharp rise in thedome on the filling axis.

View Article and Find Full Text PDF

We present a theory of spontaneous Fermi surface deformations for half-filled Landau levels (filling factors of the form [Formula: see text]). We assume the half-filled level to be in a compressible, Fermi liquid state with a circular Fermi surface. The Landau level projection is incorporated via a modified effective electron-electron interaction and the resulting band structure is described within the Hartree-Fock approximation.

View Article and Find Full Text PDF

We use polarization-resolved electronic Raman spectroscopy to study quadrupolar charge dynamics in a nonmagnetic [Formula: see text] superconductor. We observe two types of long-wavelength [Formula: see text] symmetry excitations: 1) a low-energy quasi-elastic scattering peak (QEP) and 2) a broad electronic continuum with a maximum at 55 meV. Below the tetragonal-to-orthorhombic structural transition at [Formula: see text], a pseudogap suppression with temperature dependence reminiscent of the nematic order parameter develops in the [Formula: see text] symmetry spectra of the electronic excitation continuum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!