A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated detection of cancer cells in effusion specimens by DNA karyometry. | LitMetric

Background: The average sensitivity of conventional cytology for the identification of cancer cells in effusion specimens is only approximately 58%. DNA image cytometry (DNA-ICM), which exploits the DNA content of morphologically suspicious nuclei measured on digital images, has a sensitivity of up to 91% for the detection of cancer cells. However, when performed manually, to our knowledge to date, an expert needs approximately 60 minutes for the analysis of a single slide.

Methods: In the current study, the authors present a novel method of supervised machine learning for the automated identification of morphologically suspicious mesothelial and epithelial nuclei in Feulgen-stained effusion specimens. The authors compared this with manual DNA-ICM and a gold standard cytological diagnosis for 121 cases. Furthermore, the authors retrospectively analyzed whether the amount of morphometrically abnormal mesothelial or epithelial nuclei detected by the digital classifier could be used as an additional diagnostic marker.

Results: The presented semiautomated DNA karyometric solution identified more diagnostically relevant abnormal nuclei compared with manual DNA-ICM, which led to a higher sensitivity (76.4% vs 68.5%) at a specificity of 100%. The ratio between digitally abnormal and all mesothelial nuclei was found to identify cancer cell-positive slides at 100% sensitivity and 70% specificity. The time effort for an expert therefore is reduced to the verification of a few nuclei with exceeding DNA content, which to our knowledge can be accomplished within 5 minutes.

Conclusions: The authors have created and validated a computer-assisted bimodal karyometric approach for which both nuclear morphology and DNA are quantified from a Feulgen-stained slide. DNA karyometry thus increases the diagnostic accuracy and reduces the workload of an expert when compared with manual DNA-ICM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6587753PMC
http://dx.doi.org/10.1002/cncy.22072DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
effusion specimens
12
compared manual
12
manual dna-icm
12
detection cancer
8
cells effusion
8
dna karyometry
8
dna content
8
morphologically suspicious
8
mesothelial epithelial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!