Background And Objective: To assess variability in vessel density (VD) measurements across three optical coherence tomography angiography (OCTA) devices to identify a methodology that offers the least amount of variation in VD, and to assess the effect of averaging of multiple scans on VD variability.
Patients And Methods: Fifteen eyes of eight healthy individuals were imaged consecutively on three OCTA devices. Segmentations at the superficial, deep, and full retinal layers were generated. Repeat scans for each retinal layer were registered and averaged to generate one OCTA image. Two different automated thresholding techniques were used to calculate vessel area density (VAD) from binarized images and vessel skeleton density (VSD) from skeletonized images. Vessel length, a linear measure of the combined lengths of vessels, was calculated. Foveal avascular zone (FAZ) area was measured.
Results: All three OCTA devices were significantly different (P < .0001). This finding remained after averaging images (P < .0001). VSD was more repeatable within a device but less reproducible across devices. Conversely, VAD demonstrated less repeatability but greater reproducibility. Differences in VSD between devices were systematic and attributable to differences in resolution. Vessel length, unaffected by resolution, demonstrated no significant differences between the devices (P > .107). There was no significant difference in FAZ area across devices (P = .51). After averaging images, VD was significantly different from the single images for each device and plexus (P < .05) but remained within 1% of the value of a single scan.
Conclusions: OCTA devices show variability in VD for healthy individuals. With greater repeatability, VSD appeared useful for following a patient on one device. VAD and vessel length seemed ideal for comparing vessel parameters between OCTA devices. After averaging multiple scans, VSD remained within 1% of a single scan, for which clinical significance remains to be determined. Caution is advised when comparing quantitative analyses across OCTA devices. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:S5-S17.].
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3928/23258160-20180814-02 | DOI Listing |
J Biomed Opt
January 2025
Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing, China.
Significance: Optical coherence tomography (OCT) is widely utilized to investigate brain activities and disorders in anesthetized or restrained rodents. However, anesthesia can alter several physiological parameters, leading to findings that might not fully represent the true physiological state. To advance the understanding of brain function in awake and freely moving animals, the development of wearable OCT probes is crucial.
View Article and Find Full Text PDFBMC Ophthalmol
January 2025
Department of Refractive Surgery, Guangzhou Aier Eye Hospital, Jinan University, Guangzhou City, Guangdong Province, 510000, China.
Purpose: To evaluate the impact of Implantable Collamer Lens (ICL) implantation on anterior chamber angle parameters and posterior segment structures in highly myopic eyes and explore potential correlations between these changes. The study aimed to assess alterations in superficial and deep vessel density (SVD, DVD), foveal avascular zone (FAZ) area, and retinal nerve fiber layer (RNFL) thickness to clarify the safety profile of ICL implantation.
Methods: Prospective observational study, included 36 highly myopic eyes undergoing ICL implantation in surgery group and 23 non-surgical control eyes in non-surgery group.
Graefes Arch Clin Exp Ophthalmol
January 2025
Department of Ophthalmology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200001, China.
Purpose: To evaluate the posterior scleral stiffness of different regions in high myopic eyes and to explore its associations with macular choroidal and peripapillary retinal nerve fiber layer (pRNFL) thickness and vasculature.
Methods: Thirty subjects with high myopic eyes and 30 subjects with low myopic eyes were included in this study. The elastic modulus of the macular and peripapillary sclera at the temporal, nasal, superior and inferior regions were determined via shear wave elastography (SWE).
Sci Rep
January 2025
Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
To assess the choroidal vessels in healthy eyes using a novel three-dimensional (3D) deep learning approach. In this cross-sectional retrospective study, swept-source OCT 6 × 6 mm scans on Plex Elite 9000 device were obtained. Automated segmentation of the choroidal layer was achieved using a deep-learning ResUNet model along with a volumetric smoothing approach.
View Article and Find Full Text PDFSurv Ophthalmol
December 2024
Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, UC San Diego, La Jolla, CA, United States. Electronic address:
The increasing global prevalence of myopia presents a significant public health concern, and growing evidence has demonstrated that myopia is a major risk factor for the development of open-angle glaucoma. Therefore, timely detection and management of glaucoma in myopic patients are crucial; however, identifying the structural alterations of glaucoma in the optic nerve head (ONH) and retinal tissues of myopic eyes using standard diagnostic tools such as fundus photography, optical coherence tomography (OCT), and OCT angiography (OCTA) presents challenges. Additionally, myopia-related perimetric defects can be confounded with glaucoma-related defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!