Structural Changes in Provincial Emission Transfers within China.

Environ Sci Technol

College of Economics and Management , Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue , Nanjing 211106 , China.

Published: November 2018

Chinese provinces ultimately implement China's national climate policies. In the 2000s, there were unbalanced emission transfers (emissions produced in one region but consumed in other regions) between China's well- and less-developed regions, mainly related to demand in the well-developed eastern provinces. In the past decade, the plateau in China's exported emissions and changes in its industrial structure suggest that the features of the provincial emission transfers could have changed. We construct a Chinese provincial multiyear, multisector model (multi-regional input-output model) to investigate the structural changes in China's provincial emission transfers from 2002 to 2012. We find that from 2007 to 2012, the international-export-associated emission transfers driven by eastern provinces decreased by 17% after the 262% increase in 2002-07, while investment dominated 99% of the increase in emission transfers. At the sector level, emissions caused by construction in the east and west, and technology-intensive manufacturing in the center that largely related to investment were the major components of the increasing emission transfers in 2007-12, accounting for 23%, 21%, and 10% of the increase, respectively. Our findings indicate that attention should be given to committed emissions from investment and the interaction between non-uniform provincial climate policies and economic relationships between provinces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.8b03424DOI Listing

Publication Analysis

Top Keywords

emission transfers
28
provincial emission
12
structural changes
8
climate policies
8
eastern provinces
8
emission
7
transfers
7
provincial
5
changes provincial
4
transfers china
4

Similar Publications

In the current years, gas-liquid membrane contactors (GLMCs) have been introduced as a promising, versatile and easy-to-operate technology for mitigating the emission of major greenhouse contaminants (i.e., CO and HS) to the ecosystem.

View Article and Find Full Text PDF

The degradation mechanism of multi-resonance thermally activated delayed fluorescence materials.

Nat Commun

January 2025

Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.

1,4-Azaborine-based arenes are promising electroluminescent emitters with thermally activated delayed fluorescence (TADF), offering narrow emission spectra and high quantum yields due to a multi-resonance (MR) effect. However, their practical application is constrained by their limited operational stability. This study investigates the degradation mechanism of MR-TADF molecules.

View Article and Find Full Text PDF

Aggregation-induced emission and absorption enhancement of mixed-valent rhenium oxide quantum dots by triethylamine: Implications for food safety monitoring.

J Hazard Mater

December 2024

Department of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; Center for Nanoscience & Nanotechnology, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No.100, Shiquan 1st Rd., Kaohsiung 80708, Taiwan. Electronic address:

Food freshness monitoring and volatile amine detection are key to food safety. In this study, we demonstrated the applicability of mixed-valence rhenium oxide quantum dots (MV-ReOQDs), synthesized via the hydrothermal reaction of α-cyclodextrin and rhenium ion precursors, in triethylamine (TEA) sensing. Spectroscopic correlation techniques showed that the developed MV-ReOQDs possessed mixed-valent rhenium, α-cyclodextrin as capped ligand, partially carbonized surface, and amorphous phase structure.

View Article and Find Full Text PDF

Paddy fields are a major anthropogenic source of global methane (CH) emissions, a powerful greenhouse gas (GHG). This study aimed at gaining insights of different organic and inorganic conductive materials (CMs) - biochar, fungal melanin, and magnetite - to mitigate CH emissions, and on their influence on key microbial populations, mimicking the postharvest season throughout the degradation of rice straw in microcosms under anaerobic conditions encompassing postharvest paddy rice soils from the Ebro Delta, Spain. Results showed that fungal melanin was the most effective CM, significantly reducing CH emissions by 29 %, while biochar amendment also reduced emissions by 10 %.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluates different DFT and TD-DFT methods for simulating ultrafast excited-state dynamics in Fe(II) complexes.
  • The research uses time-resolved X-ray emission spectroscopy data from specific iron complexes to benchmark simulation results between metal-to-ligand charge-transfer (MLCT) and metal-centered (MC) states.
  • Findings suggest that the choice of DFT/TD-DFT method significantly impacts simulation accuracy, with B3LYP* and TPSSh performing best in matching experimental dynamics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!