Due to growing environmental concerns on the toxicity of lead-based piezoelectric materials, lead-free alternatives are urgently required but so far have not been able to reach competitive performance. Here we employ a novel phase-boundary engineering strategy utilizing the multiphase convergence, which induces a broad structural flexibility in a wide phase-boundary zone with contiguous polymorphic phase transitions. We achieve an ultrahigh piezoelectric constant ( d) of 700 ± 30 pC/N in BaTiO-based ceramics, maintaining >600 pC/N over a wide composition range. Atomic resolution polarization mapping by Z-contrast imaging reveals the coexistence of three ferroelectric phases (T + O + R) at the nanoscale with nanoscale polarization rotation between them. Theoretical simulations confirm greatly reduced energy barriers facilitating polarization rotation. Our lead-free material exceeds the performance of the majority of lead-based systems (including the benchmark PZT-5H) in the temperature range of 10-40 °C, making it suitable as a lead-free replacement in practical applications. This work offers a new paradigm for designing lead-free functional materials with superior electromechanical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.8b07844 | DOI Listing |
Sci Rep
January 2025
Military Institute of Engineering, Praça General Tibúrcio 80, Urca, Rio de Janeiro, RJ, 22290-270, Brazil.
The antiscale magnetic treatment (ASMT) claims to utilize magnetic field to combat scaling. However, its underlying mechanism, effectiveness, and reliability remain controversial. To address these contentious aspects, we analyze the influence of a magnetic field on the different stages of typical scale formation, using [Formula: see text] as a model scale.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi'an Jiaotong University, NO.28 Xianning West Road, Xi'an, 710049, Shaanxi Province, China.
Supercritical water gasification (SCWG) is famous for the clean utilization of organic wastes without SO emission. Investigating the decomposition mechanism of sulfone compounds, the dominant organic sulfur compounds of organic wastes, in supercritical water (SCW) is conducive to the development of SCWG technology. Herein, the comparative decomposition mechanism of phenyl vinyl sulfone (PVS), diphenyl sulfone (DS), and benzo[b]thiophene 1,1-dioxide (BD) are explored via experiments and density functional theoretical (DFT) calculations.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), Xi'an 710049 PR China.
Graphitic carbon nitride (g-CN) has been regarded as highly potential photocatalyst for solar energy utilization. However, the restricted absorption of visible light for pristine g-CN significantly limits the solar-light-driven chemical reaction efficiency. Herein, structurally distorted g-CN nanosheets with awakened n-π* electron transition were successfully synthesized through hexamethylenetetramine (HMTA)-involved supercritical CO (scCO) treatment and following pyrolysis of melamine precursor.
View Article and Find Full Text PDFInvest Radiol
January 2025
From the Departments of Radiology (J.F.H., S.Y.C., J.-P.G., J.S., P.N., S.B.R., T.M.G.), Biomedical Engineering (S.B.R., T.M.G.), Medical Physics (S.Y.C., S.B.R., T.M.G.), Medicine (S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin-Madison, WI; and Department of Diagnostic and Interventional Radiology (J.F.H., J.-P.G.), University Hospital Würzburg, Würzburg, Germany.
Rationale And Objectives: Pulmonary magnetic resonance angiography (MRA) is an imaging method with proven utility for the exclusion of pulmonary embolism and avoids the need for ionizing radiation and iodinated contrast agents. High-relaxivity gadolinium-based contrast agents (GBCAs), such as gadopiclenol, can be used to reduce the required gadolinium dose for pulmonary MRA. The aim of this study was to compare the contrast enhancement performance of gadopiclenol with an established gadobenate dimeglumine-enhanced pulmonary MRA protocol.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, Virginia, 24061-0131, UNITED STATES.
Magnetorheological elastomers (MREs) are soft magnetic composites that achieve tunable changes in stiffness and energy response in the presence of a magnetic field. Rigid particle composite (RC) MREs have been studied for decades for their potential applications to automotive dampers and robotic systems. Recently, magnetic fluid composite (FC) MREs have been developed which utilize magnetic fluids as inclusions to elastomers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!