Cross-coupling reactions of alkenyl halides with 4-alkyl-1,4-dihydropyridines as alkylation reagents have been achieved by combination of nickel and photoredox catalysts. Alkenyl halides bearing alkyl and aryl substituents are available. Particularly, in the use of aryl-substituted alkenyl halides, cross-coupling reactions are associated with E to Z isomerization of alkenes. Thus, Z-isomers of the products are obtained as major products. The present strategy provides a novel synthetic method to control the stereochemistry around alkenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.201801542 | DOI Listing |
Chem Commun (Camb)
January 2025
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China.
We present a highly efficient and versatile nickel-catalyzed protocol for the reductive cross-coupling of unactivated CFH-substituted electrophiles with a wide variety of aryl and alkenyl halides. This novel approach offers high catalytic reactivity and broad functional group compatibility, enabling late-stage fluoroalkylation of drug molecules.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
An efficient synthesis of continuously substituted quinoline derivatives palladium-catalyzed intramolecular 6- imidoylative cyclization of -alkenyl aryl isocyanides with (hetero)aryl halides or vinylic triflates has been developed. The reaction proceeds through the concerted metalation-deprotonation (CMD) mechanism by activation of a vinyl C-H bond with imidoylpalladium assisted by the carboxylate.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
University of Turin - Department of Chemistry, Via Giuria 7, 10125, Turin, Italy.
The chemoselective synthesis of trisubstituted alkenyl halides (Cl, Br, F, I) starting from ketones and aldehydes and lithium halocarbenoids is reported. Upon forming the corresponding tetrahedral intermediate adduct, followed by the addition of thionyl chloride, a selective E2-type elimination is triggered, furnishing the targeted motifs. The transformation takes place under full chemocontrol: various sensitive functionalities ( ester, nitrile, nitro, or halogen groups) can be placed on the starting materials, thus documenting a wide reaction scope, as well as the application of the technique to biologically active substances.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Ni-catalyzed multicomponent cross-couplings have emerged as a powerful strategy for efficiently constructing complex molecular architectures from a diverse array of organic halides. Despite its potential, selectively forming multiple chemical bonds in a single operation, particularly in the realm of cross-electrophile coupling catalysis, remains a significant challenge. In this study, we have developed a consecutive open-shell reductive Ni catalysis, enabling the formation of two geminal C(sp)-C(sp) bonds from two stereoelectronically similar C(sp)-I reactants in conjunction with a methylene electrophile.
View Article and Find Full Text PDFOrg Lett
December 2024
Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.
Enamides have emerged as robust alternatives for enamines, exhibiting versatile reactivity for further synthetic modifications, including nucleophilic addition, cycloaddition, and asymmetric hydrogenation. While transition-metal-catalyzed cross-coupling of alkenyl (pseudo)halides with amides has been widely employed to construct this valuable scaffold, it suffers from some limitations, such as the need for transition-metal catalysts and the preparative synthesis of alkenyl (pseudo)halides. In this study, we report a mild and convenient stereoretentive decarboxylative amidation of α,β-unsaturated carboxylic acids with easily procurable 1,4,2-dioxazol-5-ones, providing a practical synthetic route to enamides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!