Background: Inflammation is associated with increased sympathetic drive in cardiovascular diseases. The paraventricular nucleus (PVN) of the hypothalamus is a key regulator of sympathetic nerve activity at post-myocardial infarction (MI). High mobility group box-1 (HMGB1) exhibits inflammatory cytokine like activity in the extracellular space. Inflammation is associated with increased sympathetic drive in cardiovscular diseases. However, the role of HMGB1 in sympathetic nerve activity at post-MI remains unknown. The aim of the present study is to determine the role and mechanism of HMGB1 in the PVN, in terms of sympathetic activity and arrhythmia after MI.

Methods: Sprague-Dawley rats underwent left anterior descending coronary artery ligation to induce MI. Anti-HMGB1 polyclonal antibody or control IgG was bilaterally microinjected into the PVN (5 μL every second day for seven consecutive days). Then, renal sympathetic nerve activity (RSNA) was recorded. The association between ventricular arrhythmias (VAs) and MI was evaluated using programmed electrophysiological stimulation. After performing electrophysiological experiments in vivo, immunohistochemistry was used to detect the distribution of HMGB1, while Western blot was used to detect the expression of HMGB1 and p-ERK in the PVN of MI rats.

Results: HMGB1 and p-ERK were upregulated in the PVN in rats at post-MI. Moreover, bilateral PVN microinjection of anti-HMGB1 polyclonal antibody reversed the expression of HMGB1 and p-ERK, and consequently decreased the baseline RSNA and inducible VAs, when compared to those in sham rats.

Conclusions: These results suggest that MI causes the translocation of HMGB1 in the PVN, which leads to sympathetic overactivation through the ERK1/2 signaling pathway. The bilateral PVN microinjection of anti-HMGB1 antibody can be an effective therapy for MI-induced arrhythmia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084387PMC
http://dx.doi.org/10.5603/CJ.a2018.0117DOI Listing

Publication Analysis

Top Keywords

sympathetic nerve
12
nerve activity
12
hmgb1 p-erk
12
high mobility
8
mobility group
8
group box-1
8
sympathetic
8
post-myocardial infarction
8
inflammation associated
8
associated increased
8

Similar Publications

Transcutaneous Electrical Nerve Stimulation (TENS) and Electronic Muscle Stimulation (EMS) are non-invasive therapies widely used for pain relief and neuromuscular adaptation. However, the clinical research supporting the efficacy of TENS in chronic pain management is limited by significant methodological flaws, including small sample sizes and inconsistent reporting of stimulation parameters. TENS modulates pain perception through various techniques, targeting specific nerve fibers and pain pathways.

View Article and Find Full Text PDF

Background: Prenatal development of autonomic innervation of sinus venosus-related structures might be related to atrial arrhythmias later in life. Most of the pioneering studies providing embryological background are conducted in animal models. To date, a detailed comparison with the human cardiac autonomic nervous system (cANS) is lacking.

View Article and Find Full Text PDF

While autonomic dysregulation and repolarization abnormalities are observed in subarachnoid hemorrhage (SAH), their relationship remains unclear. We aimed to measure skin sympathetic nerve activity (SKNA), a novel method to estimate stellate ganglion nerve activity, and investigate its association with electrocardiogram (ECG) alterations after SAH. We recorded a total of 179 SKNA data from SAH patients at three distinct phases and compared them with 20 data from controls.

View Article and Find Full Text PDF

Research on interoception has revealed the role of heartbeats in shaping our perceptual awareness and embodying a first-person perspective. These heartbeat dynamics exhibit distinct responses to various types of touch. We advanced that those dynamics are directly associated to the brain activity that allows self-other distinction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!