Many of the surgeries performed under general anesthesia are aided by electroencephalogram (EEG) monitoring. With increased focus on detecting the anesthesia states of patients in the course of surgery, more attention has been paid to analyzing the power spectra and entropy measures of EEG signal during anesthesia. In this paper, by using the relative power of EEG frequency bands and the EEG entropy measures, a new method for detecting the depth of anesthesia states has been presented based on the least squares support vector machine (LS-SVM) classifiers. EEG signals were recorded from 20 patients before, during and after general anesthesia in the operating room at a sampling rate of 200 Hz. Then, 12 features were extracted from each EEG segment, 10 s in length, which are used for anesthesia state monitoring. No significant difference was observed (p > 0.05) between these features and the bispectral index (BIS), which is the commonly used measure of anesthetic effect. The used LS-SVM classifier based method is able to identify the anesthesia states with an accuracy of 80% with reference to the BIS index. Since the underlying equation of the utilized LS-SVM is linear, the computational time of the algorithm is not significant and therefore it can be used for online application in operation rooms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13246-018-0688-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!