Efficient n-type dye-sensitized solar cells are known since the seminal work of O'Reagan and Grätzel in 1991. However, highly efficient p-type dye-sensitized solar cells have not been developed so far. This hinders the construction of tandem dye-sensitized solar cells, which can surpass the performance of n-type devices. Within this work, we investigate if a temporary coordination of transition metal-based redox mediators at a sensitizer can increase the efficiency of p-type dye-sensitized solar cells. Based on a computational screening, diverse Cu, Ni, and Co redox mediators were selected to construct p-type dye-sensitized solar cells. Unfortunately, the efficiency of the investigated devices does not surpass analogous cells with iodide-triiodide as redox mediator. While Ni and Cu complexes might be reduced to Ni(0) and Cu(0), respectively, the investigated Co-complex quenches the excited state efficiently. As a result, the necessary electron injection from the semiconductor is too slow, which hinders the construction of a highly efficient p-type dye-sensitized solar cell. Graphical Abstract Comparison of the mode of action of p-type dye-sensitized solar cells. While top shows the traditional one, bottom shows the investigated devices where a temporary link between dye and redox mediator plays a crucial role.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-018-3848-8DOI Listing

Publication Analysis

Top Keywords

dye-sensitized solar
32
p-type dye-sensitized
24
solar cells
24
redox mediator
12
dye redox
8
increase efficiency
8
efficiency p-type
8
dye-sensitized
8
solar
8
highly efficient
8

Similar Publications

Dye-sensitization is a promising strategy to improve the light absorption and photoactivity abilities of wide-bandgap semiconductors, like TiO. For effective water-splitting photoanodes with no sacrificial agents, the electrochemical potential of the dye must exceed the thermodynamic threshold needed for the oxygen evolution reaction. This study investigates two promising organic cyanoacrylic dyes, designed to meet that criterion by means of theoretical calculations.

View Article and Find Full Text PDF

Dye-Sensitized Solar Cells with Modified TiO Scattering Layer Produced by Hydrothermal Method.

Materials (Basel)

January 2025

Department of Materials Science and Engineering, National Dong Hwa University, Hualien 974301, Taiwan.

This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO (H-TiO) aggregates. The X-ray diffraction (XRD) pattern of H-TiO reveals only an anatase phase.

View Article and Find Full Text PDF

Hydrogen-substituted graphdiyne (HsGDY) is a two-dimensional material with an sp-sp carbon skeleton featuring a band gap and a porous structure that enhances ion diffusion. In previous reports, HsGDY growth was limited to metal substrates such as Cu, which then required transfer. Here, we developed a sandwich method that allows HsGDY to be grown directly on the target substrate.

View Article and Find Full Text PDF

Background: The demand for sustainable energy solutions has increased interest in natural microalgal dyes as photosensitizers in dye-sensitized solar cells (DSSCs). This study addresses the critical issue of maximizing dye integrity and yield during extraction, particularly the degradation that occurs at temperatures above 60 °C. Our investigation of dye extraction from Asterarcys quadricellulare and Scenedesmus sp.

View Article and Find Full Text PDF

The efficient functioning of dye-sensitized solar cells (DSSCs) is governed by the interplay of three essential components: the semiconductor, the dye, and the electrolyte. While the impact of the electrolyte composition on the device's performance has been extensively studied in n-type DSSCs, much less is known about p-type-based devices. Here, we investigate the effect of potential-determining ions on the energetics and stability of dye-sensitized NiO surfaces by using electrochemical, ab initio molecular dynamics simulations, and ab initio electronic structure calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!