Formation of ZnCoO@MnO core-shell electrode materials for hybrid supercapacitor.

Dalton Trans

School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, P. R. China.

Published: November 2018

In this work, ZnCoO@MnO core-shell structures are successfully prepared on nickel foam by a simple hydrothermal approach. The obtained core-shell structures exhibit excellent areal capacitance and cycling stability, which may be ascribed to the rational design of a hybrid-material based electrode structure that facilitates ion transport. The as-assembled supercapacitor device shows outstanding specific capacitance, demonstrating that ZnCoO@MnO core-shell structure is a candidate as a supercapacitor electrode material in flexible energy storage applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8dt03298jDOI Listing

Publication Analysis

Top Keywords

zncoo@mno core-shell
12
core-shell structures
8
formation zncoo@mno
4
core-shell
4
core-shell electrode
4
electrode materials
4
materials hybrid
4
hybrid supercapacitor
4
supercapacitor work
4
work zncoo@mno
4

Similar Publications

Gold nanorod in silver tetrahedron: Cysteamine mediated synthesis of SERS probes with embedded internal markers for AFP detection.

Anal Chim Acta

February 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China. Electronic address:

Background: Plasmonic core-shell nanostructures with embedded internal markers used as Raman probes have attracted great attention in surface-enhanced Raman scattering (SERS) immunoassay for cancer biomarkers due to their excellent uniform enhancement. However, current core-shell nanostructures typically exhibit a spherical shape and are coated with a gold shell, resulting in constrained local field enhancement.

Results: In this work, we prepared a core-shell AuNR@BDT@Ag structure by depositing silver on the surface of Raman reporter-modified gold nanorods (AuNR).

View Article and Find Full Text PDF

Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions.

View Article and Find Full Text PDF

The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).

View Article and Find Full Text PDF

Advancements in Oral Delivery Systems for Probiotics Based on Polysaccharides.

Polymers (Basel)

January 2025

College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.

Probiotics are an essential dietary supplement for intestinal flora balance, inhibition of pathogenic bacteria and immune regulation. However, probiotic inactivation during gastrointestinal transportation remains a big challenge for oral administration. Hence, oral delivery systems (ODSs) based on polysaccharides have been constructed to protect probiotics from harsh environments.

View Article and Find Full Text PDF

Due to the high viscosity and low fluidity of viscous crude oil, how to effectively recover spilled crude oil is still a major global challenge. Although solar thermal absorbers have made significant progress in accelerating oil recovery, its practical application is largely restricted by the variability of solar radiation intensity, which is influenced by external environmental factors. To address this issue, this study created a new composite fiber that not only possesses solar energy conversion and storage capabilities but also facilitates crude oil removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!