Increased promoter activity as a mechanism in atypical normokalemic periodic paralysis.

Neurol Genet

Center for Undiagnosed and Rare Diseases (ZusE) (M.S., T.M., B.K., J.R.S.); Department of Cardiology (V.R.) and Department of Neurology (R.D.), University Hospital Giessen and Marburg; Vegetative Physiology (S.R., N.D.), Philipps-University Marburg, Institute of Physiology and Pathophysiology, & Marburg Center for Mind, Brain and Behavior, Marburg, Germany; Institute for Algebra (G.P.), Johannes Kepler University Linz; and Department of Gastroenterology (A.M.), Hospital Elisabethinen, Linz, Austria.

Published: October 2018

Objective: To identify the genetic basis of a patient with symptoms of normokalemic sporadic periodic paralysis (PP) and to study the effect of mutations.

Methods: A candidate gene approach was used to identify causative gene mutations, using Sanger sequencing. promoter activity was analyzed in transfected HEK293 cells with a luciferase assay, and functional analysis of Kir2.6 channels was performed with the two-electrode voltage-clamp technique.

Results: Although we did not identify harmful mutations in SCN4A, CACNA1S, KCNJ2 and KCNE3, we detected a monoallelic four-fold variant in KCNJ18 (R39Q/R40H/A56E/I249V), together with a variant in the respective promoter of this channel (c.-542T/A). The exonic variants in Kir2.6 did not alter the channel function; however, luciferase assays revealed a 10-fold higher promoter activity of the c.-542A promoter construct, which is likely to cause a gain-of-function by increased expression of Kir2.6. We found that reducing extracellular K levels causes a paradoxical reduction in outward currents, similar to that described for other inward rectifying K channels. Thus, reducing the extracellular K levels might be a therapeutic strategy to antagonize the transcriptionally increased KCNJ18 currents. Consistently, treatment of the patient with K reducing drugs dramatically improved the health situation and prevented PP attacks.

Conclusions: We show that a promoter defect in the gene is likely to cause periodic paralysis, as the observed transcriptional upregulation will be linked to increased Kir2.6 function. This concept is further supported by our observation that most of the PP attacks in our patient disappeared on medical treatment with K reducing drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6186026PMC
http://dx.doi.org/10.1212/NXG.0000000000000274DOI Listing

Publication Analysis

Top Keywords

promoter activity
12
periodic paralysis
12
reducing extracellular
8
extracellular levels
8
reducing drugs
8
promoter
5
increased
4
increased promoter
4
activity mechanism
4
mechanism atypical
4

Similar Publications

Background: Interactions between RNA-binding proteins and RNA regulate RNA transcription during osteoporosis. Ferroptosis, a programmed cell death caused by iron metabolism, plays a vital role in osteoporosis. However, the mechanisms by which RNA-binding proteins are involved in ferroptosis during osteoporosis remain unclear.

View Article and Find Full Text PDF

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

Altered 3D genome reorganization mediates precocious myeloid differentiation of aged hematopoietic stem cells in inflammation.

Sci China Life Sci

December 2024

Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.

Inflammation is a driving force of hematopoietic stem cells (HSCs) aging, causing irreversible exhaustion of functional HSCs. However, the underlying mechanism of HSCs erosion by inflammatory insult remains poorly understood. Here, we find that transient LPS exposure primes aged HSCs to undergo accelerated differentiation at the expense of self-renewal, leading to depletion of HSCs.

View Article and Find Full Text PDF

TRADD-mediated pyroptosis contributes to diabetic cardiomyopathy.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China.

Regulated cell death like pyroptosis is one vital cause of diabetic cardiomyopathy (DCM), which eventually leads to heart failure. Tumor necrosis factor (TNF) receptor-associated death domain protein (TRADD) is an adapter protein with multiple functions that participates in the pathophysiological progress of different cardiovascular disorders via regulating regulated cell death. Studies have shown that TRADD combines with receptor-interacting protein kinase 3 (RIPK3) and facilitates its activation, thereby mediating TNF-induced necroptosis.

View Article and Find Full Text PDF

ABCF1-K430-Lactylation promotes HCC malignant progression via transcriptional activation of HIF1 signaling pathway.

Cell Death Differ

January 2025

Department of Hepatobiliary Surgery of the affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.

Lysine lactylation plays critical roles in various diseases, including cancer. Our previous study showed that lactylation of non-histone ABCF1 may be involved in hepatocellular carcinoma (HCC) progression. In this study, we evaluated the prognostic value of ABCF1-K430la in HCC using immunohistochemical staining and performed amino acid point mutations, multi-omics crossover, and biochemical experiments to investigate its biological role and underlying mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!