Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigated high-efficiency two-terminal tandem photovoltaic (PV) devices consisting of a p/i/n thin film silicon top sub-cell (p/i/n-TFS) and a heterojunction with an intrinsic thin-layer (HIT) bottom sub-cell. We used computer simulations and experimentation. The short-circuit current density (J) of the top sub-cell limits the J of the p/i/n-TFS/HIT tandem PV device. In order to improve the J of the top sub-cell, we used a buffer-layer at the p/i and i/n interface and a graded forward-profile (f-p) band gap hydrogenated amorphous silicon germanium active layer, namely i-layer, in the top sub-cell. These two approaches showed a remarkable raise of the top sub-cell's J, leading to the increase of the J of the PV tandem device. Furthermore, in order to minimize the optical loss, we employed a double-layer anti-reflective coating (DL-ARC) with a magnesium fluoride/indium tin oxide double layer on the front surface. The reduction in broadband reflection on the front surface (with the DL-ARC) and the enhanced optical absorption in the long wavelength region (with the graded f-p band gap) resulted in the high J, which helped achieve the efficiency up to 16.04% for inorganic-inorganic c-Si-based tandem PV devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6194067 | PMC |
http://dx.doi.org/10.1038/s41598-018-33734-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!