Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes immunosuppression, paralysis, and deadly lymphomas in chickens. In infected animals, B cells are efficiently infected and are thought to amplify the virus and transfer it to T cells. MDV subsequently establishes latency in T cells and transforms CD4 T cells, resulting in fatal lymphomas. Despite many years of research, the exact role of the different B and T cell subsets in MDV pathogenesis remains poorly understood, mostly due to the lack of reverse genetics in chickens. Recently, Ig heavy chain J gene segment knockout (JH-KO) chickens lacking mature and peripheral B cells have been generated. To determine the role of these B cells in MDV pathogenesis, we infected JH-KO chickens with the very virulent MDV RB1B strain. Surprisingly, viral load in the blood of infected animals was not altered in the absence of B cells. More importantly, disease and tumor incidence in JH-KO chickens was comparable to wild-type animals, suggesting that both mature and peripheral B cells are dispensable for MDV pathogenesis. Intriguingly, MDV efficiently replicated in the bursa of Fabricius in JH-KO animals, while spread of the virus to the spleen and thymus was delayed. In the absence of B cells, MDV readily infected CD4 and CD8 T cells, allowing efficient virus replication in the lymphoid organs and transformation of T cells. Taken together, our data change the dogma of the central role of B cells, and thereby provide important insights into MDV pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233081PMC
http://dx.doi.org/10.1073/pnas.1813964115DOI Listing

Publication Analysis

Top Keywords

mdv pathogenesis
16
cells
13
role cells
12
cells mdv
12
jh-ko chickens
12
mdv
9
infected animals
8
mature peripheral
8
peripheral cells
8
absence cells
8

Similar Publications

Article Synopsis
  • The incidence and mortality rates of cutaneous squamous cell carcinoma (cSCC) are increasing, highlighting the urgent need for better prevention methods.
  • Topical treatments like calcipotriol and 5-fluorouracil (5-FU) can eliminate actinic keratosis (AK) lesions, but their exact mechanisms weren't clear until recent research.
  • A study shows that type 2 immunity, specifically the interaction between thymic stromal lymphopoietin (TSLP) and Th2 cells, is crucial for eliminating premalignant cells and could be targeted for cSCC prevention.
View Article and Find Full Text PDF

Coinfection of avian hepatitis E virus and different serotypes of fowl adenovirus in chicken flocks in Shaanxi, China.

Microbiol Spectr

December 2024

Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.

Unlabelled: In poultry, fowl adenovirus (FAdV) and co-infected viruses (such as avian hepatitis E virus, aHEV) are likely to cause decreased egg production, inclusion body hepatitis, and pericardial effusion syndrome. From July to September 2023, eight poultry farms of commercial broilers and commercial layers suffered from increased mortality, decreased egg production, and the presence of hydropericardium-hepatitis syndrome-like gross lesions in Shaanxi province, China. To determine the source of the infection, the viruses of aHEV, FAdV, avian leukosis virus (ALV), Marek's disease virus (MDV), Newcastle disease virus (NDV), and H9N2 avian influenza virus (AIV) were detected.

View Article and Find Full Text PDF

MDV-encoded protein kinase U3 phosphorylates WTAP to inhibit transcriptomic mA modification and cellular protein translation.

Vet Microbiol

January 2025

College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:

Marek's disease virus (MDV)-encoded U3 is a highly conserved serine/threonine protein kinase in alpha-herpesviruses. In other alpha-herpesviruses, such as pseudorabies virus (PRV), U3 phosphorylates the N6-methyladenosine (mA) methyltransferase Wilms tumor 1-associated protein (WTAP), inhibiting mA modification. However, the role and mechanism of U3-mediated WTAP phosphorylation during MDV infection remain undefined.

View Article and Find Full Text PDF

Long-Term Cognitive, Functional, and Patient-Reported Outcomes in Patients With Anti-NMDAR Encephalitis.

Neurology

December 2024

From the Department of Neurology (J.B., C.J.R., I.K., A.E.M.B., Y.S.C., C.N.K., J.C.P.V., A.A.G.T., B.T., L.P.K., M.A.A.M.d.B., M.R.M., J.K., R.W.v.S., J.M.d.V., R.F.N., P.A.E.S.S., M.J.T.), Erasmus University Medical Center, Rotterdam; Department of Neurology (S.H.C.O.), Amsterdam University Medical Center; Department of Immunology (S.V.), Erasmus University Medical Center, Rotterdam; Laboratory of Medical Microbiology and Immunology Microvida (M.W.J.S.), Tilburg; and Department of Neurology & Alzheimer Center (E.v.d.B.), Erasmus University Medical Center, Rotterdam, the Netherlands.

Background And Objectives: Anti-NMDA receptor (anti-NMDAR) encephalitis generally manifests in young adults. Although 80%-90% returns to independence, the majority experience persistent cognitive and psychosocial difficulties. Studies have demonstrated that cognitive recovery may continue for years; the temporal trajectory is largely unknown, as are factors influencing cognitive/psychosocial recovery.

View Article and Find Full Text PDF

Marek's disease (MD), an immunosuppressive disease induced by the Marek's disease virus (MDV), is regarded as an ideal model for lymphoma research to elucidate oncogenic and anti-oncogene genes. Using this model, we found that circRUNX2.2, derived from exon 6 of RUNX2, was significantly upregulated in MDV-infected tumorous spleens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!