A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fast unsupervised nuclear segmentation and classification scheme for automatic allred cancer scoring in immunohistochemical breast tissue images. | LitMetric

Background And Objective: This paper presents an improved scheme able to perform accurate segmentation and classification of cancer nuclei in immunohistochemical (IHC) breast tissue images in order to provide quantitative evaluation of estrogen or progesterone (ER/PR) receptor status that will assist pathologists in cancer diagnostic process.

Methods: The proposed segmentation method is based on adaptive local thresholding and an enhanced morphological procedure, which are applied to extract all stained nuclei regions and to split overlapping nuclei. In fact, a new segmentation approach is presented here for cell nuclei detection from the IHC image using a modified Laplacian filter and an improved watershed algorithm. Stromal cells are then removed from the segmented image using an adaptive criterion in order to get fast tumor nuclei recognition. Finally, unsupervised classification of cancer nuclei is obtained by the combination of four common color separation techniques for a subsequent Allred cancer scoring.

Results: Experimental results on various IHC tissue images of different cancer affected patients, demonstrate the effectiveness of the proposed scheme when compared to the manual scoring of pathological experts. A statistical analysis is performed on the whole image database between immuno-score of manual and automatic method, and compared with the scores that have reached using other state-of-art segmentation and classification strategies. According to the performance evaluation, we recorded more than 98% for both accuracy of detected nuclei and image cancer scoring over the truths provided by experienced pathologists which shows the best correlation with the expert's score (Pearson's correlation coefficient = 0.993, p-value < 0.005) and the lowest computational total time of 72.3 s/image (±1.9) compared to recent studied methods.

Conclusions: The proposed scheme can be easily applied for any histopathological diagnostic process that needs stained nuclear quantification and cancer grading. Moreover, the reduced processing time and manual interactions of our procedure can facilitate its implementation in a real-time device to construct a fully online evaluation system of IHC tissue images.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2018.08.005DOI Listing

Publication Analysis

Top Keywords

segmentation classification
12
tissue images
12
allred cancer
8
cancer scoring
8
breast tissue
8
classification cancer
8
cancer nuclei
8
cancer
7
nuclei
7
segmentation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!