Pulsed Electromagnetic Fields Increase Pigmentation through the p-ERK/p-p38 Pathway in Zebrafish ().

Int J Mol Sci

Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, Goyang-si 10326, Korea.

Published: October 2018

Melanogenesis is a biological process resulting in the production of melanin pigment, which plays an important role in the prevention of sun-induced skin injury, and determines hair and skin color. So, a wide variety of approaches have been proposed to increase the synthesis of melanin. This study evaluated the effects of pulsed electromagnetic fields (PEMFs) on the pigmentation of zebrafish () in vivo. We stimulated pigmentation in zebrafish by using specific frequencies and intensities of PEMFs. This study focuses on pigmentation using PEMFs, and finds that PEMFs, at an optimal intensity and frequency, upregulate pigmentation by the stimulated expression of tyrosinase-related protein 1 (TRP1), dopachrome tautomerase (DCT) through extracellular signal-regulated kinase(ERK) phosphorylation, and p38 phosphorylation signaling pathways in zebrafish. These results suggest that PEMFs, at an optimal intensity and frequency, are a useful tool in treating gray hair, with reduced melanin synthesis in the hair shaft or hypopigmentation-related skin disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214121PMC
http://dx.doi.org/10.3390/ijms19103211DOI Listing

Publication Analysis

Top Keywords

pulsed electromagnetic
8
electromagnetic fields
8
pigmentation zebrafish
8
pemfs optimal
8
optimal intensity
8
intensity frequency
8
pigmentation
5
pemfs
5
fields increase
4
increase pigmentation
4

Similar Publications

For noninvasive light-based physiological monitoring, optimal wavelengths of individual tissue components can be identified using absorption spectroscopy. However, because of the lack of sensitivity of hardware at longer wavelengths, absorption spectroscopy has typically been applied for wavelengths in the visible (VIS) and near-infrared (NIR) range from 400 to 1,000 nm. Hardware advancements in the short-wave infrared (SWIR) range have enabled investigators to explore wavelengths in the ~1,000 nm to 3,000 nm range in which fall characteristic absorption peaks for lipid, protein, and water.

View Article and Find Full Text PDF

Nexus: A versatile console for advanced low-field MRI.

Magn Reson Med

January 2025

Department 8.1 - Biomedical Magnetic Resonance, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.

Purpose: To develop a low-cost, high-performance, versatile, open-source console for low-field MRI applications that can integrate a multitude of different auxiliary sensors.

Methods: A new MR console was realized with four transmission and eight reception channels. The interface cards for signal transmission and reception are installed in PCI Express slots, allowing console integration in a commercial PC rack.

View Article and Find Full Text PDF

Background And Purpose: The objective was to examine the adjuvant effect of active pulsed electromagnetic field (PEMF) versus microwave (MW) therapy, as well as sham PEMF, in addressing pain and improving functionality for treating knee osteoarthritis (KOA).

Methods: This was a double-blind, placebo-controlled, randomized clinical trial. Individuals diagnosed with KOA were assigned to an intervention combining an exercise program (EX) with active PEMF, MW, or sham PEMF.

View Article and Find Full Text PDF

Over the past ten years, there has been an increasing demand for reliable consumer wearables as users are inclined to monitor their health and fitness metrics in real-time, especially since the COVID-19 pandemic. Reflectance pulse oximeters in fitness trackers and smartwatches provide convenient, non-invasive SpO measurements but face challenges in achieving medical-grade accuracy, particularly due to difficulties in capturing physiological signals, which may be affected by skin pigmentation. Hence, this study sets out to investigate the influence of skin pigmentation, particularly in individuals with darker skin, on the accuracy and reliability of SpO measurement in consumer wearables that utilise reflectance pulse oximeters.

View Article and Find Full Text PDF

A Review of Miniature Radio Transmitters for Wildlife Tracking.

Sensors (Basel)

January 2025

The Blavatnik School of Computer Science and AI, Tel Aviv University, Tel Aviv 69978, Israel.

This article surveys the literature on miniature radio transmitters designed to track free-ranging wild animals using emitter-localization techniques. The articles covers the topics of power sources used in such transmitters, including miniature batteries and energy harvesting, techniques for generating the transmitted radio-frequency carrier, techniques for creating short radio pulses and more general on-off schedules, modulation in modern wildlife-tracking transmitters, construction, manufacturing, and tuning techniques, and recent trends in this area. The article also describes the recreation of the first successful wildlife-tracking transmitter, a nontrivial invention that had a profound impact on wildlife ecology, and explores its behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!