Di-(2-ethylhexyl) phthalate (DEHP) is an endocrine disrupting chemical (EDC) widely used as a plasticizer in many materials. Epidemiological investigations have shown that DEHP exposure during early development is related to cerebellar-related adverse neurodevelopmental outcomes. However, animal studies involving the effect of DEHP exposure on cerebellar development have rarely been reported and the potential mechanisms are unclear. The aim of this study was to investigate the effect of maternal DEHP exposure on the proliferation of cerebellar granule cell precursor cells (GCPs) and the mechanisms involved. Wistar rats were randomly assigned to four exposure groups and given 0, 30, 300, or 750 mg/kg/d DEHP by intragastric administration from gestational day (GD) 0 to postnatal day (PN) 21. Exposure to 300 and 750 mg/kg/d DEHP restrained GCPs proliferation and impaired neurodevelopment for males. Furthermore, exposure to 300 and 750 mg/kg/d DEHP decreased male pups protein expressions and mRNA levels of molecules related to proliferation, including Shh, Gli1, N-Myc, CyclinD1. In addition, the estrogen level and aromatase expression also reduced in male pups after maternal exposure to DEHP. However, effects on females were not obvious. These results suggested that 300 and 750 mg/kg/d DEHP exposure inhibit the proliferation of GCPs in male offspring and ultimately contribute to the impairment of neuromotor development. This, may be caused by the down-regulation of Shh signaling. And the susceptibility of male offspring to DEHP exposure may be attributed to the decreased estrogen level and aromatase expression in male pup's cerebellum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2018.10.040 | DOI Listing |
Se Pu
February 2025
Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100214, China.
A comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOF-MS) method was developed to analyze 25 traditional phthalate esters (PAEs) and 19 novel alternatives in indoor dust samples. PAEs are ubiquitous in indoor environments because they are widely used as plasticizers in a variety of consumer products, and potential health concerns have prompted the need for effective monitoring methods. In this study, dust samples were collected from various indoor settings in a university campus, including classrooms, cafeterias, laboratories, and dormitories, and were subsequently ultrasonically extracted with hexane-dichloromethane (1∶1, v/v) solution for 30 min.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
Chemicals in plastics raise significant concerns for potential adverse environmental and health impacts. However, dissipation kinetics and fluxes of chemicals from outdoor plastic products remain largely uncharacterized, hindering the accurate assessment of their environmental exposure. This study quantified outdoor dissipation profiles for 20 "priority" chemicals, including sunscreens (benzophenone, benzophenone-3, octyl salicylate, etc.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Biomedical and Translational Sciences Institute, Neuroscience Division, Athens, GA, United States.
Significance: Women are at increased risk for mood disorders, which may be partly attributed to exposure to endocrine-disrupting chemicals (EDCs) during sensitive periods such as pregnancy. Exposure during these times can impact brain development in the offspring, potentially leading to mood disorders in later life. Additionally, fluctuating levels of endogenous estrogens, as seen during pregnancy, or the use of oral contraceptives, can further elevate this risk.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Urology, An-Nan Hospital, China Medical University, Tainan, Taiwan. Electronic address:
Phthalate exposure is linked to prostate enlargement through sex hormonal changes and oxidative stress. However, its role and action mechanism in prostate cancer remain unclear. This study examined two patient cohorts: 204 patients undergoing prostate biopsy (24 benign and 180 malignancies) and 85 with confirmed prostate cancer receiving robotic-assisted radical prostatectomy.
View Article and Find Full Text PDFMol Cell Endocrinol
January 2025
Department of Urology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China. Electronic address:
Male reproductive disorders are responsible for approximately 50% of infertility cases. Bis (2-ethylhexyl) phthalate (DEHP) is a common environmental pollutant known for its reproductive toxicity. Oxidative stress is a key mechanism in response to DEHP exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!