It is generally accepted that carbohydrate binding modules (CBMs) recognize their carbohydrate ligands by hydrophobic and CH-π interactions. Point mutations of one CBM26 of the Lactobacillus amylovorus α-amylase starch-binding domain (LaCBM26) showed that conserved non-aromatic residue are essential in the starch recognition function of the domain, as the mutation of a single glutamine (Q68L) eliminates binding to starch and β-cyclodextrin, even in the presence of aromatic amino acids necessary for ligand binding. The secondary structure of mutated proteins was verified and showed no differences from the wild-type domain. However, random mutations of five residues involved in binding (Y18, Y20, Q68, E74, and F77) did cause change in the secondary structure of the protein, which also causes loss of function. Much of the diversity introduced in the LaCBM26 was probably incompatible with the appropriate folding of these proteins, suggesting that the domain has little tolerance to change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2018.10.061 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!