Accurate determination of the free fraction of a drug in plasma can be challenging when it falls below 1% and even more so when below 0.1%. Equilibrium dialysis with diluted plasma has been used to determine unbound fraction below 1%, but some analytes are not amenable to this method. One robust alternative for accurately measuring very highly bound compounds is equilibrium gel filtration; however, radiolabeled compounds have been used with this technique to quantify the low analyte concentrations. This report examined results obtained using radiolabeled compounds with liquid scintillation detection and those obtained using their nonradiolabeled analogs with liquid chromatography-tandem mass spectrometry detection. The 2 methods provided comparable results over the range of 0.005%-4% free, with a slope of 1.0 and a R = 0.93. These results demonstrate that equilibrium gel filtration with liquid chromatography-tandem mass spectrometry detection can be used earlier in the drug discovery process to determine the unbound fraction of highly bound drugs and may help obviate the need for radiolabeled compound.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2018.10.004DOI Listing

Publication Analysis

Top Keywords

equilibrium gel
12
gel filtration
12
highly bound
8
determine unbound
8
unbound fraction
8
radiolabeled compounds
8
liquid chromatography-tandem
8
chromatography-tandem mass
8
mass spectrometry
8
spectrometry detection
8

Similar Publications

Evaporation-Assisted Synthesis of Olympic Gels.

Angew Chem Int Ed Engl

January 2025

UESTC: University of Electronic Science and Technology of China, Institute of Fundamental and Frontier Sciences, Jianshe Road, Chengdu, CHINA.

Catenated networks exclusively composed of intertwining rings were first envisioned as "Olympic gels" by Pierre-Gilles de Gennes four decades ago but have not been successfully prepared in artificial materials yet due to the challenge in synthesis. Herein, we present a bio-inspired, evaporation-assisted strategy to address this issue. In our design, the evaporation of liquid catalysts that induce ring-chain equilibrium of polymer systems drives macrocycles to encounter and assists their catenation through reversible cyclization.

View Article and Find Full Text PDF

Dynamical arrest for globular proteins with patchy attractions.

Soft Matter

January 2025

Division of Physical Chemistry, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden.

Attempts to use colloid science concepts to better understand the dynamic properties of concentrated or crowded protein solutions are challenging due to the fact that globular proteins generally have heterogeneous surfaces that result in anisotropic or patchy contributions to their interaction potential. This is particularly difficult when targeting non-equilibrium transitions such as glass and gel formation in concentrated protein solutions. Here we report a systematic study of the reduced zero shear viscosity of the globular protein -crystallin, an eye lens protein that plays a vital role in vision-related phenomena such as cataract formation or presbyopia, and compare the results to the existing structural and dynamic data.

View Article and Find Full Text PDF

Hydrogels are flexible materials characterized by a 3D network structure, which possess high water content and adjustable physicochemical properties. They have found widespread applications in tissue engineering, electronic skin, drug delivery, flexible sensors, and photothermal therapy. However, hydrogel networks often exhibit swelling behavior in aqueous environments, which can result in structural degradation and a loss of gel performance.

View Article and Find Full Text PDF

In this study, an approach has been proposed in response to the urgent need for a sensitive and stable method for glucose detection at low concentrations. Platinum octaethylporphyrin (PtOEP) was chosen as the probe and embedded into the matrix material to yield a glucose-sensing film, i.e.

View Article and Find Full Text PDF

Preparation, Optical, and Heat Resistance Properties of Phenyl-Modified Silicone Gel.

Polymers (Basel)

December 2024

Key Laboratory of Organosilicon Chemistry and Material Technology, College of Material, Chemistry and Chemical Engineering, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.

A series of Si-H- or Si-Vi-terminated, branched and linear oligomers containing MeSiO segments were prepared by equilibrium polymerization or non-equilibrium polymerization initiated by living anions, respectively. These oligomers were used to improve the defects of concentrated crosslinking points and the high hardness of crosslinked products when using phenyltris(dimethylsiloxy)silane or 1,1,5,5-tetramethyl-3,3-diphenyl trisiloxane as crosslinking agents in the preparation of silicone gel. NMR, FT-IR, and GPC characterized the structure and molecular weight information of the prepared oligomers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!