Quantum dots tuned to atomic resonances represent an emerging field of hybrid quantum systems where the advantages of quantum dots and natural atoms can be combined. Embedding quantum dots in nanowires boosts these systems with a set of powerful possibilities, such as precise positioning of the emitters, excellent photon extraction efficiency and direct electrical contacting of quantum dots. Notably, nanowire structures can be grown on silicon substrates, allowing for a straightforward integration with silicon-based photonic devices. In this work we show controlled growth of nanowire-quantum-dot structures on silicon, frequency tuned to atomic transitions. We grow GaAs quantum dots in AlGaAs nanowires with a nearly pure crystal structure and excellent optical properties. We precisely control the dimensions of quantum dots and their position inside nanowires and demonstrate that the emission wavelength can be engineered over the range of at least 30 nm around 765 nm. By applying an external magnetic field, we are able to fine-tune the emission frequency of our nanowire quantum dots to the D transition of Rb. We use the Rb transitions to precisely measure the actual spectral line width of the photons emitted from a nanowire quantum dot to be 9.4 ± 0.7 μeV, under nonresonant excitation. Our work brings highly desirable functionalities to quantum technologies, enabling, for instance, a realization of a quantum network, based on an arbitrary number of nanowire single-photon sources, all operating at the same frequency of an atomic transition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.8b03363 | DOI Listing |
J Phys Chem Lett
January 2025
Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Qianjin Street No. 2699, Changchun 130012, China.
Developing heavy-metal-free materials with wide tunable emission is important to light-emitters. The alloying method is utilized in ZnSe magic size clusters (MSCs) with Te to form ZnSeTe and manipulate the band gap structure in ZnSe. The growth of ZnTe on alloyed ZnSeTe quantum dots (QDs) forms ZnSeTe/ZnTe core/shell nanostructures, showing the tunable photoluminescence emission peak from 450 to 760 nm with the different thicknesses of ZnTe shell.
View Article and Find Full Text PDFInt J Legal Med
January 2025
Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India.
Polymerase Chain Reaction (PCR) has transformed forensic DNA analysis but is still limited when dealing with compromised trace or inhibitor-containing samples. Nanotechnology has been integrated into nanoPCR (nanoparticle-assisted PCR) to overcome these obstacles. Nanomaterials improve PCR sensitivity, selectivity, and efficiency.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States.
Synergistic photodynamic/photothermal therapy (PDT/PTT) can be used to target cancer cells by locally generating singlet oxygen species or increasing temperature under laser irradiation. This approach offers higher tumor ablation efficiency, lower therapeutic dose requirements, and reduced side effects compared to single treatment approaches. However, the therapeutic efficiency of PDT/PTT is still limited by the low oxygen levels within the solid tumors caused by abnormal vasculature and altered cancer cell metabolism.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
A novel additive method to boost the Seebeck coefficient of doped conjugated polymers without a significant loss in electrical conductivity is demonstrated. Perovskite (CsPbBr) quantum dots (QDs) passivated by ligands with long alkyl chains are mixed with a conjugated polymer in a solution phase to form polymer-QD blend films. Solution sequential doping of the blend film with AuCl solution not only doped the conjugated polymer but also decomposed the QDs, resulting in a doped conjugated polymer film embedded with separated ions dissociated from the QDs.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
Correction for 'Preventing biofilm formation and eradicating pathogenic bacteria by Zn doped histidine derived carbon quantum dots' by Vijay Bhooshan Kumar , , 2024, , 2855-2868, https://doi.org/10.1039/D3TB02488A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!