Advances of Ionic Liquids in Analytical Chemistry.

Anal Chem

Department of Chemistry , Iowa State University, 1605 Gilman Hall, Ames , Iowa 50011 , United States.

Published: January 2019

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.8b04710DOI Listing

Publication Analysis

Top Keywords

advances ionic
4
ionic liquids
4
liquids analytical
4
analytical chemistry
4
advances
1
liquids
1
analytical
1
chemistry
1

Similar Publications

With the encroaching issue of water pollution, the use of involved chemicals to remove pollutants from water is not only a risk of chemical contamination, a potential hazard to the environment and human health but also requires significant investment in managing and improving the chemicals. Therefore, alginate as one of the nanomaterial-adorned polysaccharides-based entity that usually extract from brown algae has been used as novel and more efficient catalysts in the removal of a variety of aqueous pollutants from wastewater, including ionic metals and organic/inorganic pollutants by using the adsorption techniques. Adsorption is a technique used in water treatment where non-polar or particles less soluble in water are stuck to the surface of the adsorbent and therefore purifying it.

View Article and Find Full Text PDF

Harnessing Nanomaterials for Next-Generation DNA Methylation Biosensors.

Small

January 2025

Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.

DNA methylation is an epigenetic mechanism that regulates gene expression and is implicated in diseases such as cancer and atherosclerosis. However, traditional clinical methods for detecting DNA methylation often lack sensitivity and specificity, making early diagnosis challenging. Nanomaterials offer a solution with their unique properties, enabling highly sensitive photochemical and electrochemical detection techniques.

View Article and Find Full Text PDF

Phytic Acid-Induced Gradient Hydrogels for Highly Sensitive and Broad Range Pressure Sensing.

Adv Mater

January 2025

Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.

Ionic conductive hydrogels have emerged as an excellent option for constructing dielectric layers of interfacial iontronic sensors. Among these, gradient ionic hydrogels, due to the intrinsic gradient elastic modulus, can achieve a wide range of pressure responses. However, the fabrication of gradient hydrogels with optimal mechanical and sensing properties remains a challenge.

View Article and Find Full Text PDF

High-temperature and long-term sintering of β″-AlO solid electrolyte (Beta″ Alumina Solid Electrolyte, BASE) can easily cause NaO volatilization. It reduces the solid electrolyte (SE) quality, resulting in low ion conductivity of the electrolyte. It is also difficult to form uniform ionic channels.

View Article and Find Full Text PDF

The cartilage possesses limited regenerative capacity, necessitating advanced approaches for its repair. This study introduces a bioink designed for cartilage tissue engineering (TE) by incorporating ionically cross-linkable alginate into the photo-cross-linkable MuMA bioink, resulting in a double cross-linked interpenetrating network (IPN) hydrogel. Additionally, hyaluronic acid (HA), a natural component of cartilage and synovial fluid, was added to enhance the scaffold's properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!