The purpose of this study was to investigate the underlying molecular mechanisms of fracture healing mediated by bone marrow mesenchymal stem cells. Differentially expressed microRNAs in acutely injured subjects and healthy volunteers were screened by microarray analysis. The dual luciferase reporter system was used to verify whether insulin-like growth factor 1 (IGF1) was the direct target gene regulated by miR-148a. The expression level of miR-148a and IGF1 after osteogenic differentiation was detected by quantitative real-time polymerase chain reaction. Western blot was used to determine the protein expression of bone markers, including IGF1, runt-related transcription factor 2 (Runx2), osteocalcin, and osteopontin in rat bone marrow-derived mesenchymal stem cells. Alkaline phosphatase and alizarin red staining was used to detect alkaline phosphatase activity and calcium deposition. An animal fracture model was used for in vivo experiments. MiR-148a was highly expressed in acutely injured subjects compared with healthy volunteers, and IGF1 was a target of miR-148a. Moreover, compared with the negative control group, IGF1 messenger RNA expression was significantly increased in the miR-148a antagomir group. During osteogenic differentiation, the expression of IGF1, Runx2, osteocalcin, and osteopontin was higher in the miR-148a antagomir group than other groups. In vivo experiments further confirmed that upregulation of IGF1 enhanced fracture healing efficiently by decreasing callus width and area and improving bone mineral density, maximum load, stiffness, and energy absorption. It was proved that IGF1 was the direct target gene of miR-148a, and the use of rat bone marrow-derived mesenchymal stem cells with low expression of miR-148a could improve fracture healing by upregulating IGF1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.27121 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Department of Orthopedics, Suzhou Wujiang District Hospital of Traditional Chinese Medicine (Suzhou Wujiang District Second People's Hospital), Suzhou 215200, China.
Rotator cuff tears are the most common conditions in sports medicine and attract increasing attention. Scar tissue healing at the tendon-bone interface results in a high rate of retears, making it a major challenge to enhance the healing of the rotator cuff tendon-bone interface. Biomaterials currently employed for tendon-bone healing in rotator cuff tears still exhibit limited efficacy.
View Article and Find Full Text PDFTzu Chi Med J
September 2024
School of Medicine, Tzu Chi University, Hualien, Taiwan.
Objectives: Gastric cancer (GC) is one of the most malignant tumors. Mounting studies highlighted gastric cancer stem cells (GCSCs) were responsible for the failure of treatment due to recurrence and drug resistance of advanced GC. However, targeted therapy against GCSC for improving GC prognosis suffered from lack of suitable models and molecular targets in terms of personalized medicine.
View Article and Find Full Text PDFMater Today Bio
February 2025
Kunming Institute of Zoology, Chinese Academy of Sciences, PR China.
The early treatment of Osteonecrosis of Femoral Head (ONFH) remains a clinical challenge. Conventional Bone Marrow Mesenchymal Stem Cell (BMSC) injection methods often result in unsatisfactory outcomes due to mechanical cell damage, low cell survival and retention rates, inadequate cell matrix accumulation, and poor intercellular interaction. In this study, we employed a novel cell carrier material termed "3D Microscaffold" to deliver BMSCs, addressing these issues and enhancing the therapeutic effects of cell therapy for ONFH.
View Article and Find Full Text PDFBME Front
January 2025
State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
This study aims to clarify the effects of bioceramic interface cues on macrophages. Recently, there have been many researches exploring the effects of interface topography cues on macrophage polarization and cytokine secretion. However, the effects and underlying mechanisms of bioceramic interface cues on macrophages still need exploring.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
Long-term exposure to ultraviolet radiation compromises skin structural integrity and results in disruption of normal physiological functions. Stem cells have gained attention in anti-photoaging, while controlling the tissue mechanical microenvironment of cell delivery sites is crucial for regulating cell fate and achieving optimal therapeutic performances. Here, we introduce a mechanically regulated human recombinant collagen (RHC) microcarrier generated through microfluidics, which is capable of modulating stem cell differentiation to treat photoaged skin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!