In controlled environment plant production facilities, elevating either light or CO2 levels generally has led to increased biomass and yield due to enhanced canopy photosynthesis. Today, advancements in light-emitting diodes (LEDs) have made this technology a viable option for both supplementary lighting in greenhouses and a sole lighting source in controlled environment chambers. Our study used tomato plants grown under both ambient CO2 (AC) and elevated CO2 (EC) conditions then exposed them to various CO2 and lighting treatments during both whole plant and leaf level measurements. Plants grown under EC reached the first flower developmental stage 8 days sooner and were approximately 15cm taller than those grown under AC. However, under AC plants had more leaf area while their dry weights were similar. Of note, under EC chlorophyll a and b were lower, as were carotenoids per unit leaf area. Whole plant analyses, under all CO2 challenges, showed that plants exposed to high-pressure sodium (HPS), red-blue LED, and red-white LED had similar photosynthesis, respiration, and daily carbon gain. Under different light qualities, day-time transpiration rates were similar among CO2 conditions. Day-time water-use efficiency (WUE) was higher in plants grown and exposed to EC. Similarly, WUE of plants grown under AC but exposed to short-term elevated CO2 conditions was higher than those grown and tested under AC during all light treatments. Under all CO2 conditions, plants exposed to red-white and red-blue LEDs had lower WUE than those exposed to HPS lighting. Assessing alterations due to CO2 and light quality on a whole plant basis, not merely on an individual leaf basis, furthers our understanding of the interactions between these two parameters during controlled environment production. Principle component analyses of both whole plant and leaf data indicates that increasing CO2 supply has a more dramatic effect on photosynthesis and WUE than on transpiration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6193678 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205861 | PLOS |
Appl Environ Microbiol
January 2025
School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India.
Plant growth-promoting rhizobacterium Sp7 utilizes fructose efficiently via a fructose phosphotransferase system (Fru-PTS). Its genome encodes two putative Fru-PTS, each consisting of FruB (EIIA), FruK (Pfk), and FruA (EIIBC) proteins. We compared the proteomes of Sp7 grown with malate or fructose as sole carbon source, and noticed upregulation of the constituent proteins of Fru-PTS1 only on fructose.
View Article and Find Full Text PDFNature
January 2025
Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK.
Nutrient acquisition is crucial for sustaining life. Plants develop beneficial intracellular partnerships with arbuscular mycorrhiza (AM) and nitrogen-fixing bacteria to surmount the scarcity of soil nutrients and tap into atmospheric dinitrogen, respectively. Initiation of these root endosymbioses requires symbiont-induced oscillations in nuclear calcium (Ca) concentrations in root cells.
View Article and Find Full Text PDFSci Data
January 2025
Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
The pomegranate (Punica granatum L.) is an ancient fruit-bearing tree known for its nutritional and antioxidant properties. They originated from the Middle East in regions having large farms including mountainous regions of Al-Baha in Saudi Arabia.
View Article and Find Full Text PDFWheat and barley serve as significant nutrient-rich staples that are extensively grown on a global scale, spanning over 219 million hectares. The annual combined global yield is 760.9 million tons, with Kazakhstan contributing 14.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China.
Plants can recruit microorganisms to enhance soil arsenic (As) removal and nitrogen (N) turnover, but how microbial As methylation in the rhizosphere is affected by N biotransformation is not well understood. Here, we used acetylene reduction assay, gene amplicon, and metagenome sequencing to evaluate the influence of N biotransformation on As methylation in the rhizosphere of , a potential As hyperaccumulator. was grown in mining soils (MS) and artificial As-contaminated soils (AS) over two generations in a controlled pot experiment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!