Background: Ambulance data provide a useful source of population-based and spatiotemporally resolved information for assessing health impacts of air pollution in nonhospital settings. We used the clinical records of paramedics to quantify associations between particulate matter (PM2.5) and diabetic, cardiovascular, and respiratory conditions commonly managed by those responding to calls for emergency ambulance services.

Methods: We evaluated 394,217 paramedic assessments from three states in Southeastern Australia (population 13.2 million) and daily PM2.5 concentrations modeled at 5 km resolution from 2009 to 2014. We used a time-stratified, case-crossover analysis adjusted for daily meteorology to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) for each clinical outcome per 10 µg/m increase in daily PM2.5 at lags from 0 to 2 days.

Results: Increased PM2.5 was associated with increased odds of paramedic assessments of hypoglycemia (OR = 1.07; 95% CI = 1.02, 1.12, lag 0), arrhythmia (OR = 1.05; 95% CI = 1.02, 1.09, lag 0), heart failure (OR = 1.07; 95% CI = 1.02, 1.12, lag 1), faint (OR = 1.09; 95% CI = 1.04-1.13, lag 0), asthma (OR = 1.06; 95% CI = 1.01, 1.11, lag 1), chronic obstructive pulmonary disease (OR = 1.07; 95% CI = 1.01, 1.13, lag 1), and croup (OR = 1.09; 95% CI = 1.02, 1.17). We did not identify associations with cerebrovascular outcomes.

Conclusions: Ambulance data enable the evaluation of important clinical syndromes that are often initially managed in nonhospital settings. Daily PM2.5 was associated with hypoglycemia, faint, and croup in addition to the respiratory and cardiovascular outcomes that are better established.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276863PMC
http://dx.doi.org/10.1097/EDE.0000000000000929DOI Listing

Publication Analysis

Top Keywords

95% 102
16
paramedic assessments
12
daily pm25
12
107 95%
12
particulate matter
8
diabetic cardiovascular
8
cardiovascular respiratory
8
respiratory conditions
8
ambulance data
8
nonhospital settings
8

Similar Publications

Article Synopsis
  • The study measured fibrinogen fluorescence at temperatures between 20 and 80 degrees Celsius across different pH levels.
  • It was found that raising the temperature from 20 to 40 degrees Celsius did not change the structure of fibrinogen in solutions with pH between 4.5 and 9.3.
  • However, temperatures between 40 to 50 degrees Celsius caused some structural changes in neutral solutions, and temperatures above 50-55 degrees Celsius led to significant denaturation of the fibrinogen molecule.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!