For many cerebrovascular diseases both blood pressure (BP) and hemodynamic changes are important clinical variables. In this paper, we describe the development of a novel approach to noninvasively and simultaneously monitor cerebral hemodynamics, BP, and other important parameters at high temporal resolution (250 Hz sampling rate). In this approach, cerebral hemodynamics are acquired using near infrared spectroscopy based sensors and algorithms, whereas continuous BP is acquired by superficial temporal artery tonometry with pulse transit time based drift correction. The sensors, monitoring system, and data analysis algorithms used in the prototype for this approach are reported in detail in this paper. Preliminary performance tests demonstrated that we were able to simultaneously and noninvasively record and reveal cerebral hemodynamics and BP during people's daily activity. As examples, we report dynamic cerebral hemodynamic and BP fluctuations during postural changes and micturition. These preliminary results demonstrate the feasibility of our approach, and its unique power in catching hemodynamics and BP fluctuations during transient symptoms (such as syncope) and revealing the dynamic features of related events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571987 | PMC |
http://dx.doi.org/10.1109/JBHI.2018.2876087 | DOI Listing |
Acta Neurochir (Wien)
January 2025
Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street , Boston, MA, 02215, USA.
Background: Variability in long-term endovascular treatment outcomes for intracranial aneurysms has prompted questions regarding the effects of these treatments on aneurysm hemodynamics. Endovascular techniques disrupt aneurysmal blood flow and shear, but their influence on intra-aneurysmal pressure remains unclear. A better understanding of aneurysm pressure effects may aid in predicting outcomes and guiding treatment decisions.
View Article and Find Full Text PDFBrain Dev
January 2025
Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Introduction: Epileptic encephalopathy (EE) is a serious clinical issue that manifests as part of developmental and epileptic encephalopathy (DEE), particularly in childhood epilepsy. In EE, neurocognitive functions and behavior are impaired by intense epileptiform electroencephalogram (EEG) activity. Hypotheses of pathophysiological mechanisms behind EE are reviewed to contribute to an effective solution for EE.
View Article and Find Full Text PDFActa Neurochir (Wien)
January 2025
Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
Purpose: Bypass surgery is regarded as the standard treatment option for symptomatic and hemodynamically unstable moyamoya disease (MMD). However, there is ongoing debate about the most effective type of bypass surgery. We aimed to analyze the long-term outcomes of combined and indirect bypasses for MMD patients through intra-individual comparisons.
View Article and Find Full Text PDFElife
January 2025
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, United States.
High-resolution awake mouse functional magnetic resonance imaging (fMRI) remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radio frequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion-induced artifacts.
View Article and Find Full Text PDFElife
January 2025
Department of Neurosurgery, Washington University School of Medicine, Springfield, United States.
Background: Subarachnoid hemorrhage (SAH) is characterized by intense central inflammation, leading to substantial post-hemorrhagic complications such as vasospasm and delayed cerebral ischemia. Given the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation (taVNS) and its ability to promote brain plasticity, taVNS has emerged as a promising therapeutic option for SAH patients. However, the effects of taVNS on cardiovascular dynamics in critically ill patients, like those with SAH, have not yet been investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!