This paper presents the experimental validation of a readout circuit for the acquisition, amplification, and transmission of extremely weak biopotentials with a focus on electroencephalography (EEG) signals. The device, dubbed CochlEEG, benefits from a low-power design for long-term power autonomy and provides configurable gain and sampling rates to suit the needs of various EEG applications. CochlEEG features high sampling rates, up to 4 kHz, low-noise signal acquisitions, support for active electrodes, and a potential for Wi-Fi data transmission. Moreover, it is lightweight, pocket size, and affordable, which makes CochlEEG suitable for wearable and real-world applications. The efficiency of CochlEEG in EEG data acquisition is also investigated in this paper. Auditory steady-state responses acquisition results validate CochlEEG's capability in recording EEG with a signal quality comparable to commercial mobile or research EEG acquisition devices. Moreover, the results of an oddball paradigm experiment prove the capability of CochlEEG in recording event-related potentials and demonstrate its potential for brain-computer interface applications and electrophysiological research applications requiring higher temporal resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBCAS.2018.2876240 | DOI Listing |
eNeuro
January 2025
Neurophysiology of Everyday Life Group, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
A comprehensive analysis of everyday sound perception can be achieved using Electroencephalography (EEG) with the concurrent acquisition of information about the environment. While extensive research has been dedicated to speech perception, the complexities of auditory perception within everyday environments, specifically the types of information and the key features to extract, remain less explored. Our study aims to systematically investigate the relevance of different feature categories: discrete sound-identity markers, general cognitive state information, and acoustic representations, including discrete sound onset, the envelope, and mel-spectrogram.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Background: Alzheimer's disease (AD) research has been historically dominated with studies in mouse models expressing familial AD mutations; however, the majority of AD patients have the sporadic, late-onset form of AD (LOAD). To address this gap, the IU/JAX/PITT MODEL-AD Consortium has focused on development of mouse models that recapitulate LOAD by combining genetic risk variants with environmental risk factors and aging to enable more precise models to evaluate potential therapeutics. The present studies were undertaken to characterize cognitive and neurophysiological phenotypes in LOAD mice.
View Article and Find Full Text PDFClin EEG Neurosci
December 2024
Behavioral and Social Neuroscience Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
Vagal nerve stimulation (VNS) is a therapeutical option for the treatment of drug-resistant epileptic patients. The response to VNS varies from patient to patient and is difficult to predict. The proposed study is based on our previous work, identifying relative mean power in pre-implantation EEG as a reliable marker for VNS efficacy prediction in adult patients.
View Article and Find Full Text PDFBrain Stimul
December 2024
Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA. Electronic address:
Background: Transcranial magnetic stimulation (TMS) interventions could feasibly treat stroke-related motor impairments, but their effects are highly variable. Brain state-dependent TMS approaches are a promising solution to this problem, but inter-individual variation in lesion location and oscillatory dynamics can make translating them to the poststroke brain challenging. Personalized brain state-dependent approaches specifically designed to address these challenges are needed.
View Article and Find Full Text PDFJ Neurosci
December 2024
Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France
Rhythm perception and synchronization to periodicity hold fundamental neurodevelopmental importance for language acquisition, musical behavior, and social communication. Rhythm is omnipresent in the fetal auditory world and newborns demonstrate sensitivity to auditory rhythmic cues. During the last trimester of gestation, the brain begins to respond to auditory stimulation and to code the auditory environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!