Transporter proteins play an essential role in the uptake, trafficking and storage of metals in plant tissues. The Natural Resistance-Associated Macrophage Protein (NRAMP) family plays an essential role in divalent metal transport. We conducted bioinformatics approaches to identify seven NRAMP genes in the Phaseolus vulgaris genome, investigated their phylogenetic relation, and performed transmembrane domain and gene/protein structure analyses. We found that the NRAMP gene family forms two distinct groups. One group included the PvNRAMP1, -6, and -7 genes that share a fragmented structure with a numerous exon/intron organization and encode proteins with mitochondrial or plastidial localization. The other group is characterized by few exons that encode cytoplasmic proteins. In addition, our data indicated that PvNRAMP6 and -7 may be involved in mineral uptake and mobilization in nodule tissues, while the genes PvNRAMP1, -2, -3, -4 and -5 are potentially recruited during plant development. This data provided a more comprehensive understanding of the role of NRAMP transporters in metal homeostasis in P. vulgaris.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415609PMC
http://dx.doi.org/10.1590/1678-4685-GMB-2017-0272DOI Listing

Publication Analysis

Top Keywords

nramp gene
8
gene family
8
phaseolus vulgaris
8
essential role
8
nramp
5
genome-wide characterization
4
characterization nramp
4
family phaseolus
4
vulgaris insights
4
insights functional
4

Similar Publications

GsMYB10 encoding a MYB-CC transcription factor enhances the tolerance to acidic aluminum stress in soybean.

BMC Plant Biol

December 2024

Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.

Background: MYB transcription factors (TFs) play crucial roles in the response to diverse abiotic and biotic stress factors in plants. In this study, the GsMYB10 gene encoding a MYB-CC transcription factor was cloned from wild soybean BW69 line. However, there is less report on the aluminum (Al)-tolerant gene in this subfamily.

View Article and Find Full Text PDF
Article Synopsis
  • Metal ion transporters (MITs) are essential for maintaining metal balance in plants, with a focus on their roles in chickpea due to its nutritional significance.
  • A total of 12 different families of MITs have been identified, indicating diverse functions in transporting metal ions, particularly in relation to iron (Fe) assimilation.
  • Specific transporters, like CaYSL4, play a key role in transporting metals such as Fe, Zn, Cu, and Mn in chickpea seeds, which can inform efforts to breed more nutritionally enhanced varieties.
View Article and Find Full Text PDF

Natural Resistance-Associated Macrophage Protein (NRAMP), a class of metal transporter proteins widely distributed in plants, is mainly involved in the uptake and transport by plants of metal ions, such as iron, manganese and cadmium. The current study is the first to fully investigate the Triticum aestivum (T. aestivum) NRAMP gene family.

View Article and Find Full Text PDF

RsNRAMP5, a major metal transporter, promotes cadmium influx and ROS accumulation in radish (Raphanus sativus L.).

Plant Physiol Biochem

January 2025

National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:

Arable soil contamination with heavy metals (HMs) poses a great potential threat to vegetable crops and human health. Radish (Raphanus sativus L.), an economical and popular root vegetable crop, is easily absorbed HMs by its taproot.

View Article and Find Full Text PDF

Cadmium is a non-essential and toxic metal. Its presence in plants can have hazardous effects not only on the plants themselves but also on human health after consumption. A time-dependent experiment was conducted on nine accessions of A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!