Background: Ionizing radiation often causes severe injuries to radiosensitive tissues, especially haematopoietic system. Novel radioprotective drugs with low toxicity and high effectiveness are required. Prolyl hydroxylases domain (PHD) inhibitors have been reported to protect against radiation-induced gastrointestinal toxicity. In this study, we demonstrated the protective effects of a PHD inhibitor, roxadustat (FG-4592), against radiation-induced haematopoietic injuries in vitro and in vivo.
Methods: Tissue injuries were evaluated by Haematoxilin-Eosin (HE) staining assay. HSCs were determined by flow cytometry with the Lin Sca-1 c-Kit (LSK) phenotype. Cell apoptosis was determined by Annexin V/PI staining assay. Immunofluorescence was performed to measure radiation-induced DNA damage. A western blot assay was used to detect the changes of proteins related to apoptosis.
Results: We found that FG-4592 pretreatment increased survival rate of irradiated mice and protected bone marrow and spleen from damages. Number of bone marrow cells (BMCs) and LSK cells were also increased both in irradiated mice and recipients after bone marrow transplantation (BMT). FG-4592 also protected cells against radiation-induced apoptosis and double strand break of DNA.
Conclusions: Our data showed that FG-4592 exhibited radioprotective properties in haematopoietic system both in vivo and in vitro through up-regulating HIF-1α, indicating a potential role of FG-4592 as a novel radioprotector.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6307774 | PMC |
http://dx.doi.org/10.1111/jcmm.13937 | DOI Listing |
Mol Ther Oncol
September 2024
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
Hematopoietic stem cell transplantation (HSCT) is widely used to treat patients with life-threatening hematologic and immune system disorders. Current nontargeted chemo-/radiotherapy conditioning regimens cause tissue injury and induce an array of immediate and delayed adverse effects, limiting the application of this life-saving treatment. The growing demand to replace canonical conditioning regimens has led to the development of alternative approaches, such as antibody-drug conjugates, naked antibodies, and CAR T cells.
View Article and Find Full Text PDFOral Maxillofac Surg
January 2025
Oral Biology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
Objective: A nanometer-sized vesicles originating from bone marrow mesenchymal stem cells (BMMSCs), called exosomes, have been extensively recognized. This study defines the impact of BMMSCs and their derived exosomes on proliferation, apoptosis and oxidative stress (OS) levels of CP-induced parotid salivary gland damage.
Methods: BMMSCs were isolated from the tibia of four white albino rats and further characterized by flowcytometric analysis.
Clin Exp Med
January 2025
Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
Multiple myeloma (MM) is characterized by clonal plasma cell proliferation in the bone marrow, challenging prognosis prediction. We developed a gene-pairing prognostic risk model using m6A regulatory genes and a nested LASSO method. A cutoff of - 0.
View Article and Find Full Text PDFNat Commun
January 2025
BGI Research, Qingdao, 266555, China.
Lampreys are early jawless vertebrates that are the key to understanding the evolution of vertebrates. However, the lack of cytomic studies on multiple lamprey organs has hindered progress in this field. Therefore, the present study constructed a comprehensive cell atlas comprising 604,460 cells/nuclei and 70 cell types from 14 lamprey tissue samples.
View Article and Find Full Text PDFAnn Hematol
January 2025
Hematology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, 09121, Italy.
VEXAS syndrome is a complex hemato-inflammatory disorder, driven by somatic mutations in the UBA1 gene within hematopoietic precursor cells. It is characterized by systemic inflammation, rheumatological manifestations, and frequent association with myelodysplastic syndrome (MDS). We present a series of four VEXAS cases, all of which include concomitant MDS, each displaying distinct genetic signatures and clinical features at diagnosis, with a focus on their diagnostic and therapeutic implications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!