Durability is still one of the key obstacles for the further development of photocatalytic energy-conversion systems, especially low-dimensional ones. Encouragingly, recent studies show that nanoinsulators such as SiO and MgO exhibit substantially enhanced photocatalytic durability than the typical semiconductor p25 TiO . Extending this knowledge, MgO-Au plasmonic defect nanosystems are developed that combine the stable photoactivity from MgO surface defects with energy-focusing plasmonics from Au nanoparticles (NPs), where Au NPs are anchored onto monodispersed MgO nanotemplates. Theoretical calculations reveal that the midgap defect (MGD) states in MgO are generated by oxygen vacancies, which provide the main avenues for upward electron transitions under photoexcitation. These electrons drive stable proton photoreduction to H gas via water splitting. A synergistic interaction between Au's localized plasmons and MgO's oxygen vacancies is observed here, which enhances MgO's photoactivity and stability simultaneously. Such co-enhancement is attributed to the stable longitudinal-plasmon-free Au NPs, which provide robust hot electrons capable of overcoming the interband transition barrier (≈1.8 eV) to reach proton reduction potential for H generation. The demonstrated plasmonic defect nanosystems are expected to open a new avenue for developing highly endurable photoredox systems for the integration of multifunctionalities in energy conversion, environmental decontamination, and climate change mitigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201803233 | DOI Listing |
Adv Sci (Weinh)
December 2024
New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
Radiodynamic therapy that employs X-rays to trigger localized reactive oxygen species (ROS) generation can tackle the tissue penetration issue of phototherapy. Although calcium tungstate (CaWO) shows great potential as a radiodynamic agent benefiting from its strong X-ray absorption and the ability to generate electron-hole (e-h) pairs, slow charge carrier transfer and fast e-h recombination greatly limit its ROS-generating performance. Herein, via a one-pot wet-chemical method, oxygen vacancy-rich amorphous/crystalline heterophase CaWO nanoparticles (Ov-a/c-CaWO NPs) with enhanced radiodynamic effect are synthesized for radiodynamic-immunotherapy of cancer.
View Article and Find Full Text PDFSci Rep
December 2024
Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang, 262700, People's Republic of China.
To enhance the volumetric energy density and initial coulombic efficiency (ICE) of titanium oxide (TiO) as anode electrode material for lithium-ion batteries (LIB), this study employed a surface-confined in-situ inter-growth mechanism to prepare a TiO embedded carbon microsphere composite. The results revealed that the composite exhibited a highly integrated structure of TiO with oxygen vacancies and carbon, along with an exceptionally small specific surface area of 11.52 m/g.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electrical Engineering, Kookmin University, Seoul, 02707, Republic of Korea.
This study optimizes V and ΔV in amorphous indium-gallium-zinc-oxide (a-IGZO) field-effect transistors (FETs) by examining the influence of both channel length (L) and Ga composition. It was observed that as the ratio of In: Ga: Zn changed from 1:1:1 to 0.307:0.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
Modifying ZnO nanorods with graphene oxide (GO) is crucial for enhancing photocatalytic degradation by boosting the concentration of reactive oxygen species (ROS) in the reaction medium. In this study, we present a straightforward chemical synthesis of ZnO nanorods embedded on GO, forming a novel nanocomposite, GOZ. This composite serves as an efficient photocatalyst for the sunlight-driven degradation of methylene blue (MB) and ciprofloxacin (CIP).
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Metallurgy, Northeastern University, Shenyang 110819, China. Electronic address:
The synergistic activation of gaseous oxygen and surface lattice oxygen is essential for designing highly efficient catalysts to eliminate VOCs. Herein, an effective acid treatment was carried out to create more oxygen vacancies by modulating the electronic structure of MgMnO spinels and MgMnO mixed oxides. The acid-treated MgMnO exhibited outstanding catalytic performance, with the reaction rate of benzene rising by 8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!