Evaluation of in vivo antioxidant potential of (L.) Alston and Roxb. towards oxidative stress response in .

J Food Sci Technol

1Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014 India.

Published: November 2018

Excessive production and restricted elimination of free radicals like superoxide, hydroxyl radical (OH), anion radical (O ), and non-radical hydrogen peroxide (HO) are related to the development of cancer, arteriosclerosis, arthritis and neurodegenerative diseases. According to a report of World Health Organisation, about 80% of the population living in the developing countries predominantly depends on the traditional medicine for their primary healthcare. Plants possess innate ability to synthesize a wide variety of enzymatic and non-enzymatic antioxidants capable of attenuating ROS-induced oxidative damage. The ethanolic leaf extracts of L. and Roxb. exhibited a significant in vitro antioxidant activity when compared with natural antioxidant, ascorbic acid. The extracts also provided strong cellular protection against the damaging effects of HO induced oxidative stress in the mutant strains ( and ) of . The GC-MS analysis of the leaf extracts revealed the presence of phytoconstituents majorly constituting of terpenes, vitamin and fatty acids contributing to the antioxidant property. The plant extracts may serve as a potential source of exogenous antioxidants to combat the undesirable effects of oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170346PMC
http://dx.doi.org/10.1007/s13197-018-3355-zDOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
leaf extracts
8
evaluation vivo
4
antioxidant
4
vivo antioxidant
4
antioxidant potential
4
potential alston
4
alston roxb
4
oxidative
4
roxb oxidative
4

Similar Publications

Maize drought protection by Azospirillum argentinense Az19 requires bacterial trehalose accumulation.

Appl Microbiol Biotechnol

December 2024

Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.

Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.

View Article and Find Full Text PDF

Mitochondrial DNA encodes essential components of the respiratory chain complexes, serving as the foundation of mitochondrial respiratory function. Mutations in mtDNA primarily impair energy metabolism, exerting far-reaching effects on cellular physiology, particularly in the context of aging. The intrinsic vulnerability of mtDNA is increasingly recognized as a key driver in the initiation of aging and the progression of its related diseases.

View Article and Find Full Text PDF

Silencing miR-126-5p protects trabecular meshwork cells against chronic oxidative injury by upregulating HSPB8 to activate PI3K/AKT pathway.

J Mol Histol

December 2024

Department of Ophthalmology, First Affilliated Hospital, Heilongjiang University of Chinese Medicine, No.26 Heping Road, Xiangfang District, Harbin, 150000, China.

Chronic oxidative stress (COS) is related to the pathophysiology of the trabecular meshwork (TM) in glaucoma. MicroRNAs (miRNAs) have a key role in the oxidative stress-mediated glaucoma. This work investigated the function of miR-126-5p in human trabecular meshwork cells (TMCs) under chronic oxidative stress (COS).

View Article and Find Full Text PDF

Molecular mechanisms behind the inhibitory effects of ginsenoside Rg3 on hepatic fibrosis: a review.

Arch Toxicol

December 2024

College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.

Hepatitis is a chronic inflammatory liver disease and an important cause of liver fibrosis, which can progress to cirrhosis and even hepatocellular carcinoma if left untreated. However, liver fibrosis is a reversible disease, so finding new intervention targets and molecular markers is the key to preventing and treating liver fibrosis. Ginseng, the roots of Panax ginseng C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!