One of the challenges of implementing free-space quantum key distribution (QKD) systems working in daylight is to remove unwanted background noise photons from sunlight. Elaborate elimination of background photons in the spectral, temporal, and spatial domains is an indispensable requirement to decrease the quantum bit error rate (QBER), which guarantees the security of the systems. However, quantitative effects of different filtering techniques and performance optimization in terms of the secure key rate have not been investigated. In this study, we quantitatively analyze how the performance of the QBER and the key rates changes for different combinations of filtering techniques in a free-space BB84 QKD system in daylight. Moreover, we optimize the conditions of filtering techniques in order to obtain the maximum secure key rate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6193016 | PMC |
http://dx.doi.org/10.1038/s41598-018-33699-y | DOI Listing |
Commun Biol
January 2025
Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
Single cell studies have transformed our understanding of cellular heterogeneity in disease but the need for fresh starting material can be an obstacle, especially in the context of international multicenter studies and archived tissue. We developed a protocol to obtain high-quality cells and nuclei from dissected human skeletal muscle archived in the preservative Allprotect® Tissue Reagent. After fluorescent imaging microscopy confirmed intact nuclei, we performed four protocol variations that compared sequencing metrics between cells and nuclei enriched by either filtering or flow cytometry sorting.
View Article and Find Full Text PDFSci Total Environ
January 2025
Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China.
Ammonia is a highly promising carbon-neutral fuel. The use of ammonia as a fuel for internal combustion engines can reduce fossil energy consumption and greenhouse gas emissions. However, the high ignition energy required for ammonia and the slow flame propagation rate result in low combustion efficiency when ammonia is used directly in internal combustion engines.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Chemistry, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; Center for Nanoscience & Nanotechnology, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No.100, Shiquan 1st Rd., Kaohsiung 80708, Taiwan. Electronic address:
Food freshness monitoring and volatile amine detection are key to food safety. In this study, we demonstrated the applicability of mixed-valence rhenium oxide quantum dots (MV-ReOQDs), synthesized via the hydrothermal reaction of α-cyclodextrin and rhenium ion precursors, in triethylamine (TEA) sensing. Spectroscopic correlation techniques showed that the developed MV-ReOQDs possessed mixed-valent rhenium, α-cyclodextrin as capped ligand, partially carbonized surface, and amorphous phase structure.
View Article and Find Full Text PDFEur J Cancer
December 2024
Institute for Diagnostic Accuracy, Groningen, the Netherlands; Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. Electronic address:
Background: Lung cancer screening (LCS) with low-dose CT (LDCT) reduces lung-cancer-related mortality in high-risk individuals. AI can potentially reduce radiologist workload as first-read-filter by ruling-out negative cases. The feasibility of AI as first reader was evaluated in the European 4-IN-THE-LUNG-RUN (4ITLR) trial, comparing its negative-misclassifications (NMs) to those of radiologists and the impact on referral rates.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
Background: Complex interrelationships between the microbiota and cancer have been identified by several studies. However, despite delineating microbial composition in non-small cell lung cancer (NSCLC), key pathogenic microbiota and their underlying mechanisms remain unclear.
Methods: We performed 16S rRNA V3-V4 amplicon and transcriptome sequencing on cancerous and adjacent normal tissue samples from 30 patients with NSCLC, from which clinical characteristics and prognosis outcomes were collected.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!