Wind-dispersed plants have evolved ingenious ways to lift their seeds. The common dandelion uses a bundle of drag-enhancing bristles (the pappus) that helps to keep their seeds aloft. This passive flight mechanism is highly effective, enabling seed dispersal over formidable distances; however, the physics underpinning pappus-mediated flight remains unresolved. Here we visualized the flow around dandelion seeds, uncovering an extraordinary type of vortex. This vortex is a ring of recirculating fluid, which is detached owing to the flow passing through the pappus. We hypothesized that the circular disk-like geometry and the porosity of the pappus are the key design features that enable the formation of the separated vortex ring. The porosity gradient was surveyed using microfabricated disks, and a disk with a similar porosity was found to be able to recapitulate the flow behaviour of the pappus. The porosity of the dandelion pappus appears to be tuned precisely to stabilize the vortex, while maximizing aerodynamic loading and minimizing material requirements. The discovery of the separated vortex ring provides evidence of the existence of a new class of fluid behaviour around fluid-immersed bodies that may underlie locomotion, weight reduction and particle retention in biological and manmade structures.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-018-0604-2DOI Listing

Publication Analysis

Top Keywords

vortex ring
16
separated vortex
12
pappus
5
vortex
5
ring
4
ring underlies
4
underlies flight
4
dandelion
4
flight dandelion
4
dandelion wind-dispersed
4

Similar Publications

In this paper, the focusing and tight-focusing properties of radially polarized (RP) Bessel-Gaussian (BG) rotationally-symmetric power-exponent-phase vortex beam (RPVBs) were investigated theoretically and experimentally. Based on the theory of vector beam, the propagation and tight-focusing models were derived to reveal the focusing and tight-focusing properties of the RP-BG-RPVBs by numerical simulation. Then, the experimental setup was established to validate that the RP-BG-RPVBs presented the fan-shaped and polycyclic intensity distribution, which possessed the features of RP beams, BG beams, and RPVBs, similarly.

View Article and Find Full Text PDF

This study investigates the intricate properties of linearly polarized circular Airyprime-Gaussian vortex beams (CApGVBs) in tightly focused optical systems. We explore the relationship between self-focusing and tight focusing of CApGVBs by adjusting the main ring radius. By refining vortex pair parameters, we show that the intensity distribution depends significantly on whether the arrangement is axial or off-axis.

View Article and Find Full Text PDF

In this paper we propose an information encoding method based on a segmented vortex beam. The segmented vortex beam with a single uniform-intensity ring and a combination of multiple topological charges is designed for information encoding. The radius of the beam can be designed to be arbitrary, with multiple orbital angular momentum states superimposed along the ring.

View Article and Find Full Text PDF

Hovering hawkmoths exploit unsteady circulation to produce aerodynamic force.

Biol Lett

January 2025

School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China.

This study employs an integrated approach, combining three-dimensional flow visualization and two-dimensional flow measurement to investigate the underlying unsteady aerodynamic mechanisms of hovering hawkmoths. Using a single vortex ring model, three aerodynamic force components, such as aerodynamic force induced by unsteady circulation, vortex loop size variation and added mass, are estimated within a dimensionless time (normalized by one wing beat cycle) range of 0.418 < < 0.

View Article and Find Full Text PDF

Helical Surface Relief Formation by Two-Photon Polymerization Reaction Using a Femtosecond Optical Vortex Beam.

J Phys Chem Lett

January 2025

Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.

Optical vortices possess a helical phase wavefront with central phase dislocation and orbital angular momentum. We demonstrated three-dimensional microstructure formation using a femtosecond optical vortex beam. Two-photon polymerization of photocurable resin was induced by long-term exposure, resulting in the fabrication of cylindrical structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!