Xenon solubility and formation of supercritical xenon precipitates in glasses under non-equilibrium conditions.

Sci Rep

Electron Microscopy and Materials Analysis, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, United Kingdom.

Published: October 2018

Estimates of noble gas solubility in glasses and minerals are important to understand the origin of these gases, particularly xenon, in the atmosphere. However, technical difficulties and ambiguities in quantifying the dissolved gases introduce large uncertainties in the solubility estimates. We present here the use of transmission electron microscopy (TEM) with in-situ noble gas ion implantation as a non-equilibrium approach for noble gas solubility estimates. Using a suitable Xe equation of state and Monte-Carlo simulations of TEM images, a clear distinction between Xe filled precipitates and empty voids is made. Furthermore, implantation-induced changes in the solubility are estimated using molecular dynamics simulations. These studies allow us to evaluate the xenon solubility of irradiated and pristine silica glasses and monitor in-situ the diffusion-mediated dynamics between the precipitates and voids - otherwise impossible to capture. On exceeding the solubility limit, supercritical xenon precipitates, stable at least up to 1155 K, are formed. The results highlight the high capacity of silicates to store xenon and, predict higher solubility of radiogenic xenon due to the accompanying radiation damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192981PMC
http://dx.doi.org/10.1038/s41598-018-33556-yDOI Listing

Publication Analysis

Top Keywords

noble gas
12
xenon solubility
8
supercritical xenon
8
xenon precipitates
8
gas solubility
8
solubility estimates
8
xenon
7
solubility
7
solubility formation
4
formation supercritical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!