Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Phosphate (Pi) and Nitrogen (N) are essential macronutrients required for plant growth and development. In Arabidopsis thaliana (Arabidopsis), the transcription factor PHR1 acts as a Pi central regulator. PHL1 is a homolog of PHR1 and also plays a role in maintaining Pi homeostasis. In rice (Oryza sativa), OsPHR1-4 are the orthologs of PHR1 and have been implicated in regulating sensing and signaling cascades governing Pi homeostasis.
Results: Here the role of OsPHR3 was examined in regulating the homeostasis of N under different Pi regimes. Deficiencies of different variants of N exerted attenuating effects on the relative expression levels of OsPHR3 in a tissue-specific manner. For the functional characterization of OsPHR3, its Tos17 insertion homozygous mutants i.e., osphr3-1, osphr3-2, and osphr3-3 were compared with the wild-type for various morphophysiological and molecular traits during vegetative (hydroponics with different regimes of N variants) and reproductive (pot soil) growth phases. During vegetative growth phase, compared with the wild-type, OsPHR3 mutants showed significant variations in the adventitious root development, influx rates of N-NO and N-NH, concentrations of total N, NO and NH in different tissues, and the relative expression levels of OsNRT1.1a, OsNRT2.4, OsAMT1;1, OsNia1 and OsNia2. The effects of the mutation in OsPHR3 was also explicit on the seed-set and grain yield during growth in a pot soil. Although Pi deficiency affected total N and NO concentration, the lateral root development and the relative expression levels of some of the NO and NH transporter genes, its availability did not exert any notable regulatory influences on the traits governing N homeostasis.
Conclusions: OsPHR3 plays a pivotal role in regulating the homeostasis of N independent of Pi availability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192161 | PMC |
http://dx.doi.org/10.1186/s12870-018-1462-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!