Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Melanocytic naevi are common melanocytic proliferations that may simulate the appearance of cutaneous melanoma. Naevi commonly harbour somatic mutations implicated in melanomagenesis but in most cases lack the necessary genomic alterations required for melanoma development. While the mitogen-activated protein kinase pathway and ultraviolet radiation strongly contribute to naevogenesis, the somatic mutational landscape of dermoscopic naevus subsets distinguishes some of the molecular hallmarks of naevi in relation to melanoma. We herein discuss the classification of naevi and theories of naevogenesis and review the current literature on the somatic alterations in naevi and melanoma. This review focusses on the clinical-dermoscopic-pathological and genomic correlation of naevi that shapes the current understanding of naevi.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000493892 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!