White adipose tissue (WAT) mass is determined by adipocyte size and number. While adipocytes are continuously turned over, the mechanisms controlling fat cell number in WAT upon weight changes are unclear. Herein, prospective studies of human subcutaneous WAT demonstrate that weight gain increases both adipocyte size and number, but the latter remains unaltered after weight loss. Transcriptome analyses associate changes in adipocyte number with the expression of 79 genes. This gene set is enriched for growth factors, out of which one, transforming growth factor-β3 (TGFβ3), stimulates adipocyte progenitor proliferation, resulting in a higher number of cells undergoing differentiation in vitro. The relevance of these observations was corroborated in vivo where Tgfb3 mice, in comparison with wild-type littermates, display lower subcutaneous adipocyte progenitor proliferation, WAT hypertrophy, and glucose intolerance. TGFβ3 is therefore a regulator of subcutaneous adipocyte number and may link WAT morphology to glucose metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2018.09.069 | DOI Listing |
Biomed Pharmacother
January 2025
Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do 54907, South Korea. Electronic address:
Compound K (CK), an active ingredient in ginseng, has anti-cancer, anti-inflammatory, and antioxidant properties. However, its effects on thermogenesis and mitochondrial dynamics in white adipose tissue (WAT) adipocytes are not well understood. This study explores CK's impact on thermogenesis and mitochondrial metabolism in cold-exposed mice and mouse stromal vascular fraction (SVF) cells.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Human Immunology, Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszow, 35-959 Rzeszow, Poland.
Adipose tissue of obese people secretes a number of adipokines, including adiponectin and resistin, which have an antagonistic effect on the human metabolism, influencing the pathogenesis of many diseases based on low-grade inflammation. Body composition analysis using bioelectrical impedance analysis (BIA) was performed in 84 adults with obesity, i.e.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009 Zaragoza, Spain.
MicroRNAs play a pivotal role in the regulation of adipose tissue function and have emerged as promising therapeutic candidates for the management of obesity and associated comorbidities. Among them, miR-1 could be a potential biomarker for metabolic diseases and contribute to metabolic homeostasis. However, thorough research is required to fully elucidate the impact of miR-1 on human adipocyte thermogenesis and metabolism.
View Article and Find Full Text PDFKorean J Intern Med
January 2025
Department of Basic Nutrition, Ningbo College of Health Sciences, Ningbo, China.
Background/aims: Dexamethasone (DEX) is a widely used exogenous therapeutic glucocorticoid in clinical settings. Its long-term use leads to many side effects. However, its effect on metabolic disorders in individuals on a high-fat diet (HFD) remains poorly understood.
View Article and Find Full Text PDFFront Nutr
December 2024
Department of Pedodontics, Affiliated Stomatology Hospital of Jinzhou Medical University, Jinzhou, China.
Introduction: A complicated scenario where "multiple disease threats coexist and multiple health influencing factors are intertwined" is demonstrated by the fact that dental caries, obesity myopia and scoliosis have emerged as global public health issues. The problem of diseases co-existing in living things can be resolved by using probiotics. , has gained attention recently due to its probiotic properties, useful traits, and potential medical applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!