Over the past few decades, a growing body of epidemiological studies found the effects of temperature on cardiovascular disease, including the risk for acute myocardial infarction (AMI). Our study aimed to investigate whether there is an association between extremely temperature and acute myocardial infarction hospital admission in Beijng, China. We obtained 81029 AMI cases and daily temperature data from January 1, 2013 to December 31, 2016. We employed a time series design and modeled distributed lag nonlinear model (DLNM) to analyze effects of temperature on daily AMI cases. Compared with the 10th percentile temperature measured by daily mean temperature (Tmean), daily minimum temperature (Tmin) and daily minimum apparent temperature (ATmin), the cumulative relative risks (CRR) at 1st percentile of Tmean, Tmin and ATmin for AMI hospitalization were 1.15(95% CI: 1.02, 1.30), 1.24(95% CI: 1.11, 1.38) and 1.41(95% CI: 1.18, 1.68), respectively. Moderate low temperature (10th vs 25th) also had adverse impact on AMI events. The susceptive groups were males and people 65 years and older. No associations were found between high temperature and AMI risk. The main limitation of the study is temperature exposure was not individualized. These findings on cold-associated AMI hospitalization helps characterize the public health burden of cold and target interventions to reduce temperature induced AMI occurrence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192570PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204706PLOS

Publication Analysis

Top Keywords

temperature
13
acute myocardial
12
myocardial infarction
12
temperature acute
8
infarction hospital
8
effects temperature
8
ami
8
ami cases
8
daily temperature
8
daily minimum
8

Similar Publications

Observation of Robust Compressed CuO Octahedra and Exotic Spin Structure in CaCuFeO.

J Am Chem Soc

January 2025

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

CuO octahedra usually show elongated distortion, leading to active orbitals and planar exchange interactions, while compressed CuO octahedra with active orbitals and unidirectional exchange interactions are exceptionally rare. Here, we design and synthesize a new frustrated antiferromagnet CaCuFeO through a high-pressure and high-temperature approach, in which robust compressed CuO octahedra are realized, separating the FeO sheets that comprise zigzag spin ladders. Magnetic susceptibility and specific heat measurements exhibit a long-range antiferromagnetic order below the Néel temperature of 165 K, which is further confirmed by neutron diffraction.

View Article and Find Full Text PDF

Pollen germination and pollen tube (PT) growth are extremely sensitive to high temperatures. During heat stress (HS), global translation shuts down and favors the maintenance of the essential cellular proteome for cell viability and protection against protein misfolding. Here, we demonstrate that under normal conditions, the Arabidopsis (Arabidopsis thaliana) eukaryotic translation initiation factor subunit eif3m1/eif3m2 double mutant exhibits poor pollen germination, loss of PT integrity and an increased rate of aborted seeds.

View Article and Find Full Text PDF

Single-crystal Au(111), renowned for its chemically inert surface, long-range "herringbone" reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, , crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in.

View Article and Find Full Text PDF

Climate change has heightened the need to understand physical climate risks, such as the increasing frequency and severity of heat waves, for informed financial decision-making. This study investigates the financial implications of extreme heat waves on stock returns in Europe and the United States. Accordingly, the study combines meteorological and stock market data by integrating methodologies from both climate science and finance.

View Article and Find Full Text PDF

A methodology is proposed, which addresses the caveat that line-of-sight emission spectroscopy presents in that it cannot provide spatially resolved temperature measurements in non-homogeneous temperature fields. The aim of this research is to explore the use of data-driven models in measuring temperature distributions in a spatially resolved manner using emission spectroscopy data. Two categories of data-driven methods are analyzed: (i) Feature engineering and classical machine learning algorithms, and (ii) end-to-end convolutional neural networks (CNN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!