We recorded evoked potentials (EPs) from over the posterior fossa and in parallel ocular vestibular evoked myogenic potentials (OVEMPs) during visuo-vestibular stimulation in a sample of 7 male and 11 female human subjects. In 9 of the 18 subjects we were able to record EPs reliably in the form of an early biphasic positive-negative wave with latencies ~12 and 17 ms ipsilateral to head acceleration direction (P12-N17) and a slightly later, contralateral, biphasic positive-negative wave with latencies ~19 and 23 ms (P19-N23). The amplitudes of the responses varied widely between subjects. Both P12 and N23 EPs were modulated by the mode of visual stimulation, larger for vection (sense of movement) compared with optokinetic nystagmus and for congruent movement. We suggest that the EPs measured over the posterior fossa are a manifestation of climbing fiber responses of cerebellar cortical Purkinje cells, i.e., a form of vestibular cerebellar EP (VsCEP). The two subject groups with and without VsCEPs were distinguished by the magnitude of their OVEMPs and their subjective experience of vection. The modulation of VsCEPs by visual context may be a manifestation of cerebellar control of linear vestibular ocular reflex gain. NEW & NOTEWORTHY We report likely vestibular cerebellar evoked potentials (VsCEPs) produced by lateral head impulses recorded in intact humans over the posterior fossa. VsCEPs occurred as short-latency P12-N17 waves ipsilateral to the direction of head motion and as P19-N23 contralaterally and were present in half our subjects. Their properties suggest that the VsCEPs may be of a climbing-fiber origin. VsCEPs are related to the perception of motion and, possibly, control of linear vestibular ocular reflex gain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00502.2018 | DOI Listing |
Curr Biol
January 2025
Johns Hopkins University, Department of Biomedical Engineering, 720 Rutland Avenue, Baltimore 21205, USA. Electronic address:
The integration of different sensory streams is required to dynamically estimate how our head and body are oriented and moving relative to gravity. This process is essential to continuously maintain stable postural control, autonomic regulation, and self-motion perception. The nodulus/uvula (NU) in the posterior cerebellar vermis is known to integrate canal and otolith vestibular input to signal angular and linear head motion in relation to gravity.
View Article and Find Full Text PDFCerebellum
January 2025
Department of Neurology, Division of Neuro-Visual & Vestibular Disorders, The Johns Hopkins University School of Medicine, Johns Hopkins Hospital, 600 N. Wolfe Street, Baltimore, MD, USA.
A 50-year-old woman with a 20-year history of gait instability presented with new-onset vertigo and oscillopsia. Examination revealed bilateral vestibular loss, cerebellar ataxia, sensory neuropathy, a "yes-yes" head tremor, nystagmus and a family history of a similar syndrome. Genetic testing for cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (RFC1) was negative, but whole exome sequencing identified a novel mutation in the DNA methyltransferase 1 (DNMT1) gene, broadening the differential diagnosis for this phenotype.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Head and Neck Surgery and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
The relative accessibility and simplicity of vestibular sensing and vestibular-driven control of head and eye movements has made the vestibular system an attractive subject to experimenters and theoreticians interested in developing realistic quantitative models of how brains gather and interpret sense data and use it to guide behavior. Head stabilization and eye counter-rotation driven by vestibular sensory input in response to rotational perturbations represent natural, ecologically important behaviors that can be reproduced in the laboratory and analyzed using relatively simple mathematical models. Models drawn from dynamical systems and control theory have previously been used to analyze the behavior of vestibular sensory neurons.
View Article and Find Full Text PDFNAR Mol Med
October 2024
Department of Biology, Tufts University, 200 Boston Ave., Medford, MA 02155, USA.
H-DNA is an intramolecular DNA triplex formed by homopurine/homopyrimidine mirror repeats. Since its discovery, the field has advanced from characterizing the structure to discovering its existence and role . H-DNA interacts with cellular machinery in unique ways, stalling DNA and RNA polymerases and causing genome instability.
View Article and Find Full Text PDFClin Neurophysiol
December 2024
Department of Clinical Neurophysiology, Vall d'Hebron University Hospital, Passeig de la Vall d'Hebron, 119, 08035 Barcelona, Spain. Electronic address:
Introduction/objective: Biallelic expansion of the pentanucleotide AAGGG in the RFC1- gene is associated with cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS). This study aimed to comprehensively characterise this condition by conducting an in-depth neurophysiological examination of afflicted patients.
Methods: A retrospective analysis was conducted in 31 RFC1-positive patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!