A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel vertebrate system for the examination and direct comparison of the relative biological effectiveness for different radiation qualities and sources. | LitMetric

Purpose: The recent rapid increase of hadron therapy applications requires the development of high performance, reliable in vivo models for preclinical research on the biological effects of high linear energy transfer (LET) particle radiation.

Aim: The aim of this paper was to test the relative biological effectiveness (RBE) of the zebrafish embryo system at two neutron facilities.

Material And Methods: Series of viable zebrafish embryos at 24-hour post-fertilization (hpf) were exposed to single fraction, whole-body, photon and neutron (reactor fission neutrons () and (p (18 MeV)+Be,  = 3.5 MeV) fast neutron) irradiation. The survival and morphologic abnormalities of each embryo were assessed at 24-hour intervals from the point of fertilization up to 192 hpf and then compared to conventional 6 MV photon beam irradiation results.

Results: The higher energy of the fast neutron beams represents lower RBE (ref. source LINAC 6 MV photon). The lethality rate in the zebrafish embryo model was 10 times higher for 1 MeV fission neutrons and 2.5 times greater for p (18 MeV)+Be cyclotron generated fast neutron beam when compared to photon irradiation results. Dose-dependent organ perturbations (shortening of the body length, spine curvature, microcephaly, micro-ophthalmia, pericardial edema and inhibition of yolk sac resorption) and microscopic (marked cellular changes in eyes, brain, liver, muscle and the gastrointestinal system) changes scale together with the dose response.

Conclusion: The zebrafish embryo system is a powerful and versatile model for assessing the effect of ionizing radiation with different LET values on viability, organ and tissue development.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09553002.2018.1511928DOI Listing

Publication Analysis

Top Keywords

zebrafish embryo
12
fast neutron
12
relative biological
8
biological effectiveness
8
embryo system
8
fission neutrons
8
6 mv photon
8
neutron
5
novel vertebrate
4
system
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!