Traumatic spinal cord injury has recently been shown to cause a rapid increase in free fatty acids (FFAs) and lipid degradation in cats. The present studies report a more delayed, time-dependent increase in FFAs and a concomitant decrease in phospholipids following traumatic spinal injury in rats. The largest percentage increases were found for polyunsaturated fatty acids, particularly arachidonic acid. Associated with these changes were a reduction in the activity of Na+,K+-ATPase and development of spinal cord edema. These findings support the hypothesis that traumatic spinal cord injury leads to delayed, as well as early, hydrolysis of membrane phospholipids, resulting in the liberation of FFAs. Such changes may contribute to secondary spinal cord injury either through direct effects on membranes or through the actions of secondary metabolic products such as the eicosanoids. The latter may cause tissue injury by contributing to the reduction in spinal cord blood flow or through inflammatory responses that follow trauma.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.1987.tb05740.xDOI Listing

Publication Analysis

Top Keywords

spinal cord
24
traumatic spinal
12
cord injury
12
fatty acids
8
spinal
7
cord
6
injury
6
alterations lipid
4
lipid metabolism
4
metabolism na+k+-atpase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!