Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5772217PMC

Publication Analysis

Top Keywords

efficacy mercurial
4
mercurial purgatives
4
purgatives purpura
4
purpura simple
4
simple hemorrhagic
4
hemorrhagic circumstances
4
circumstances justify
4
justify blood-letting
4
blood-letting diseases
4
efficacy
1

Similar Publications

Virus-laden aerosols play a substantial role in the spread of numerous infectious diseases, particularly in enclosed indoor settings. Ultraviolet-C (UVC) disinfection is known to be a highly efficient method for disinfecting pathogenic airborne viruses. Recent recommendations suggest using far-UVC radiation (222 nm) emitted by KrCl* (krypton-chloride) excimer lamps to disinfect high-risk public spaces due to lower exposure risks than low-pressure (LP) mercury lamps (254 nm).

View Article and Find Full Text PDF

Solar-based technologies for removing potentially toxic metals from water sources: a review.

Environ Sci Pollut Res Int

January 2025

Departamento de Ciência E Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina, 88034-001, Brazil.

Technological advances have led to a proportional increase in the deposition of contaminants across various environmental compartments, including water sources. Heavy metals, also known as potentially toxic metals, are of particular concern due to their significant harmful impacts on environmental and human health. Among the available methods for mitigating the threat of these metals in water, solar radiation-based technologies stand out for their cleanliness, cost-effectiveness, and efficiency in removing or reducing the toxicity of heavy metals.

View Article and Find Full Text PDF

Mercury contamination of the environment is extremely hazardous to human health because of its significant toxicity, especially in water. Biomass-derived fluorophores such as carbon dots (CDs) have emerged as eco-friendly and cost-effective alternative sensors that provide comparable efficacy while mitigating the environmental and economic drawbacks of conventional methods. In this work, we report the fabrication of a selective fluorescence-enhancing sensor based on sulfur-doped carbon dots (SCDs) using waste bamboo-derived cellulose and sodium thiosulfate as the soft base dopant, which actively complexes with mercury ions for detection.

View Article and Find Full Text PDF

Studies on the Virucidal Effects of UV-C of 233 nm and 275 nm Wavelengths.

Viruses

December 2024

Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany.

Among the physical decontamination methods, treatment with ultraviolet (UV) radiation is a suitable means of preventing viral infections. Mercury vapor lamps (254 nm) used for room decontamination are potentially damaging to human skin (radiation) and harmful to the environment (mercury). Therefore, other UV-C wavelengths (100-280 nm) may be effective for virus inactivation on skin without damaging it, e.

View Article and Find Full Text PDF

Mercury(II)-Triggered Targeted and NIR-II Fluorescence/Photoacoustic Imaging Probe for High-Sensitivity Early Diagnosis and Evaluating Drug against Acute Liver and Kidney Injury.

Anal Chem

January 2025

State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou 730000, China.

Article Synopsis
  • Mercury ions disrupt the body's antioxidant defenses, causing oxidative stress and related health issues, highlighting the need for effective real-time monitoring of mercury levels during organ damage.
  • Researchers developed a novel dual-mode molecular probe (NHG-2) that uses NIR-II fluorescence/photoacoustic imaging to noninvasively track mercury fluctuations and assess acute liver and kidney injury in mice.
  • NHG-2 also helps evaluate the effectiveness of treatments like -acetylcysteine (NAC) by revealing how NAC activates protective cellular pathways and restores normal mitochondrial function.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!