A substrate-independent and versatile coating platform for (spatially resolved) surface functionalization, based on nitroxide radical coupling (NRC) reactions and the formation of thermo-labile alkoxyamine functional groups, was introduced. Nitroxide-decorated poly(glycidyl methacrylate) (PGMA) microspheres, obtained through bioinspired copolymer surface deposition using dopamine and a nitroxide functional dopamine derivative as monomers, were conjugated with small functional groups in a rewritable process. Reversible coding of the nitroxide functional microspheres by NRC and decoding through thermal alkoxyamine fission were monitored and characterized by electron paramagnetic resonance (EPR) spectroscopy and X-ray photoelectron spectroscopy (XPS). In addition, this nitroxide coating system was exploited in "grafting-to" polymer surface ligations of poly(methyl methacrylate) (PMMA) and poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) in spatially confined areas. Polymer strands terminated with an Irgacure 2959 (2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone) photoinitiator were obtained through chain-transfer polymerization, and subsequently coupled to nitroxide-immobilized poly(dopamine) (PDA)-coated silicon substrates by using rapid photoclick NRC reactions. Light-driven polymer surface coding was visualized by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and XPS imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201804602 | DOI Listing |
PLoS One
January 2025
Precision Laboratory of Vascular Medicine, Shanxi Cardiovascular Hospital Affiliated Shanxi Medical University, Taiyuan, PR China.
Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.
Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.
Magn Reson Med
January 2025
Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari, Japan.
Purpose: Redox homeostasis plays a key role in regulating the overall health and development of organisms. This study aimed to develop a compact and mobile continuous-wave (CW) electron paramagnetic resonance (EPR) imager to facilitate stable, highly sensitive fast three-dimensional (3D) whole-body imaging of nitroxide-infused mice.
Methods: A multiturn loop gap resonator with a diameter of 30 mm and length of 35 mm was designed for whole-body EPR imaging.
Proc Natl Acad Sci U S A
January 2025
Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853.
Ammonia oxidizing archaea (AOA) are among the most abundant microorganisms on earth and are known to be a major source of nitrous oxide (NO) emissions, although biochemical origins of this NO remain unknown. Enzymological details of AOA nitrogen metabolism are broadly unavailable. We report the recombinant expression, purification, and characterization of a multicopper oxidase, Nmar_1354, from the AOA .
View Article and Find Full Text PDFJ Exp Bot
January 2025
Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University; Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
Through extensive research, nitroxyl (HNO) has emerged as a newly recognized redox signal in plant developmental and stress responses. The interplay between nitric oxide (●NO) and HNO entails a complex network of signaling molecules and regulatory elements sensitive to the environment's specific redox conditions. However, functional implications for HNO in cell signaling require more detailed studies, starting with identifying HNO-level switches.
View Article and Find Full Text PDFActa Biomater
January 2025
Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China. Electronic address:
The U.S. Food and Drug Administration (FDA) has issued a boxed warning and mandated additional safety measures for all gadolinium-based contrast agents (GBCAs) used in clinical magnetic resonance imaging (MRI) due to their prolonged retention in the body and associated adverse health effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!