The magnetic properties of undoped, bulk CeO2 are not fully understood. In contrast to nanocrystalline ceria that exhibits paramagnetism attributed to Ce3+ at grain surfaces, bulk ceria is weakly paramagnetic, despite the absence of magnetic ions. In the present work, the magnetic susceptibility of bulk ceria ceramics doped with Lu3+, which has neither spin nor orbital angular momentum, was measured in order to assess the relative contributions of the crystal lattice, residual Ce3+ and oxygen vacancies to the overall bulk magnetization. We observed a magnetic response consisting of two parts: temperature independent (5-300 K) magnetic susceptibility, and Curie-Weiss paramagnetism. The temperature independent susceptibility decreases linearly with Lu content, and becomes diamagnetic at 30 mol% Lu. The Curie-Weiss magnetism visible at low temperatures was identified as resulting from a few ppm of Fe contaminant. However, Fe contamination does not contribute to the temperature independent paramagnetism. No contribution from Ce3+ could be detected. The fact that the magnetization decreases with Lu content, even though the concentration of oxygen vacancies, and the lattice defects associated with them, increases, indicates that neither is coupled to the magnetic field. Weak, temperature-independent paramagnetism in non-metals is usually attributed to a second order, Van Vleck-type magnetization. However, Van Vleck paramagnetism requires that the population of the first excited state be constant within the range of temperatures investigated. We discuss possible modifications of the large band gap electronic structure of undoped ceria which could account for our observations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp04953jDOI Listing

Publication Analysis

Top Keywords

bulk ceria
12
temperature independent
12
van vleck
8
vleck paramagnetism
8
magnetic susceptibility
8
oxygen vacancies
8
paramagnetism
6
magnetic
6
bulk
5
ceria
5

Similar Publications

The concept of inert matrix fuel (IMF) has been proposed to utilize the energetic value of Pu and transmute minor actinides in nuclear reactors. In order to offset the initial reactivity of nuclear fuel, gadolinium (Gd) is employed as a burnable poison, owing to its high neutron absorption cross-section. To gain insights into the radiation stability and influence of grain boundaries on irradiation behaviour, 5 mol% Gd-doped ceria samples, sintered at varying temperatures, were subjected to irradiation using 400 Kr ions.

View Article and Find Full Text PDF

The present study aims to analyze the thermal regulation of the Ce/Ce ratio on the nanonetwork titania layer over the titanium (Ti) surface developed by the alkali-mediated surface modification approach. The effect of sequential heat treatment from 200 to 800 °C was evaluated for its surface characteristics such as morphology, phase formation, roughness, hardness, hydrophilicity, etc. Surface oxidation by temperatures up to 600 °C demonstrated a progressive increase in the Ce (CeO) content with a rutile TiO network layer over the Ti surface.

View Article and Find Full Text PDF

Mesoporous materials with high surface area, large pore volume, and adjustable pore size are promising in the fields of adsorption and heterogeneous catalysis. In this work, ordered mesoporous ceria structures were successfully prepared via nanocasting using SBA-15 as a template, with Ce(NO)·6HO or CeCl·7HO as ceria precursors. The materials were characterized before and after template removal.

View Article and Find Full Text PDF

Different CeO nanostructures were synthesized using a hydrothermal method and treated with alkaline NaOH, followed by drying at 120 °C for 16 h and calcined at 400 °C for the direct oxidation of kenaf stalks to vanillin under microwave irradiation. The catalysts were characterized for their physicochemical properties using XRD, BET, Raman spectroscopy, TPR, TPO, and XPS. All synthesized CeO nanostructures show diffraction peaks corresponding to the formation of cubic fluorite, which agrees with Raman spectra of the F mode.

View Article and Find Full Text PDF

Cerium oxide, or ceria, (CeO) is one of the most studied materials for its wide range of applications in heterogeneous catalysis and energy conversion technologies. The key feature of ceria is the remarkable oxygen storage capacity linked to the switch between Ce and Ce states, in turn creating oxygen vacancies. Changes in the electronic structure occur with oxygen removal from the lattice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!