Several broadly neutralizing antibodies (bNAbs) that can target HIV strains with large degrees of variability have recently been identified. However, efforts to induce synthesis of such bNAbs that can protect against HIV infection have not met with much success. Identification of specific epitopes encoded in the HIV-1 envelope (Env) that can direct the host to synthesize bNAbs remains a challenge. In a previous study, we identified 12 antiretroviral therapy-naive HIV-1-infected individuals whose plasma exhibited broad cross-clade neutralization property against different clades of HIV-1. In this study, we sequenced the full-length HIV-1 gp160 from 11 of these individuals and analyzed the sequences to identify bNAb epitopes. We identified critical residues in the viral envelopes that contribute to the formation of conformational epitopes and possibly induce the production of bNAbs, using in silico methods. We found that many of the sequences had conserved glycans at positions N160 (10/11) and N332 (9/11), which are known to be critical for the binding of PG9/PG16-like and PGT128-like bNAbs, respectively. We also observed conservation of critical glycans at positions N234 and N276 critical for the interaction with CD4 binding site bNAbs in 8/11 and 11/11 sequences, respectively. We modeled the three-dimensional structure of the 11 HIV-1 envelopes and found that though each had structural differences, the critical residues were mostly present on the surface of the Env structures. The identified critical residues are proposed as candidates for further evaluation as bNAb epitopes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6909397 | PMC |
http://dx.doi.org/10.1089/AID.2018.0224 | DOI Listing |
Comput Struct Biotechnol J
December 2024
National Vaccine Innovation Platform, Scholl of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
Unlabelled: The prevention and treatment of metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), have emerged as critical global health challenges. Current lipid-lowering pharmacotherapies are associated with side effects, including hepatotoxicity, rhabdomyolysis, and decreased erythrocyte counts, underscoring the urgent need for safer therapeutic alternatives. Hepatocyte nuclear factor 4α (HNF4α) has been identified as a pivotal regulator of lipid metabolism, making it an attractive target for drug development.
View Article and Find Full Text PDFEng Life Sci
January 2025
Analytical Development & Analytical Attribute Science in Biologics Bristol Myers Squibb Devens Massachusetts USA.
This study emphasizes the critical importance of closely monitoring and controlling the sialic acid content in therapeutic glycoproteins, including EPO, interferon-γ, Orencia, Enbrel, and others, as the level of sialylation directly impacts their pharmacokinetics (PK), immunogenicity, potency, and overall clinical performance due to its influence on protein clearance via hepatic asialoglycoprotein receptors (ASGPR). The ASGPR recognizes and binds to glycoproteins exposed to terminal galactose or N-acetylgalactosamine residues, leading to receptor-mediated endocytosis. Recent studies have demonstrated that sialylation of O-linked glycan plays a role in protecting against macrophage galactose lectin (MGL)-mediated clearance.
View Article and Find Full Text PDFRSC Chem Biol
January 2025
Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kamigyo-ku 465 Kajii-cho Kyoto 602-8566 Japan
A multiomic study of the structural characteristics of type A and B influenza viruses by means of highly spectrally resolved Raman spectroscopy is presented. Three virus strains, A H1N1, A H3N2, and B98, were selected because of their known structural variety and because they have co-circulated with variable relative prevalence within the human population since the re-emergence of the H1N1 subtype in 1977. Raman signatures of protein side chains tyrosine, tryptophan, and histidine revealed unequivocal and consistent differences for pH characteristics at the virion surface, while different conformations of two C-S bond configurations in and methionine rotamers provided distinct low-wavenumber fingerprints for different virus lineages/subtypes.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Key Laboratory of Resource Biology and Biotechnology in Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China.
Background: The senescence of bone marrow mesenchymal stem cells (BMMSCs) is increasingly recognized as a critical factor contributing to the pathophysiology of age-related diseases. Recent studies suggest that small extracellular vesicles (sEVs) derived from the serum of elderly individuals may play a pivotal role in promoting BMMSC senescence. Glycoprotein non-metastatic melanoma protein B (GPNMB), a type I transmembrane glycoprotein, is upregulated during cellular senescence and can regulate stem cell ageing.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
CD8T cells within the tumor microenvironment (TME) are often functionally impaired, which limits their ability to mount effective anti-tumor responses. However, the molecular mechanisms behind this dysfunction remain incompletely understood. Here, we identified valosin-containing protein (VCP) as a key regulator of CD8T cells suppression in hepatocellular carcinoma (HCC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!