A series of metallated arenes bearing sigma-bonded tin, mercury, germanium, boron, or silicon were evaluated as labeling substrates for the generator-produced positron emitter 122I(t1/2 = 3.6 min). Using dichloramine-T with 122I, radiochemical yields exceeding 90% were achieved after 1 min at 25 degrees C using stannylated or mercurated arenes in ethanol, or germylated arenes in acidic solvent. Stannylated or mercurated arenes resulted in high labeling yields even with deactivated aromatics in ethanol, but regiospecifically-iodinated products were obtained only from stannylated precursors due to differences in the syntheses of these organometallics. The implications of these results to the labeling of radiopharmaceuticals with 122I are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0883-2889(87)90001-3 | DOI Listing |
Appl Radiat Isot
January 2025
Department of Chemistry, Universitas Indonesia, Depok, 16424, Indonesia.
To investigate the potential of activated carbon from palm kernel shell waste for Tc-radiolabeled nanocarbon aerosol, a new production technology for carbon-based Tc-radioaerosol from such a waste was developed. Treated-palm shell charcoal (t-PSC) was prepared by hydrothermal method to increase the surface area, followed by Tc radiolabelling optimization. The optimal Tc radiolabeling conditions resulted in an adsorption capacity of 21.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France. Electronic address:
Currently, Ovarian Cancer (OC) is the most lethal gynecological malignancy. In most patients, it progresses without clinical signs or symptoms, leading to a late diagnosis when it has already spread in the peritoneal cavity as peritoneal carcinomatosis (PC). To date, OC PC management is based on cytoreductive surgery to remove the macroscopic disease, followed by chemotherapy.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
(1) : Targeted alpha therapy is an emerging field in nuclear medicine driven by two advantages: overcoming resistance in cancer-suffering patients to beta therapies and the practical application of lower activities of Pb- and Ac-labelled peptides to achieve the same doses compared to beta therapy due to the highly cytotoxic nature of alpha particles. However, quality control of the Pb/Ac-radiopharmaceuticals remains a challenge due to the low activity levels used for therapy (100 kBq/kg) and the formation of several free daughter nuclides immediately after the formulation of patient doses; (2) : The routine alpha detection on thin-layer chromatograms (TLC) of Pb- and Ac-labelled peptides using a MiniScanPRO+ scanner combined with an alpha detector head was compared with detection using an AR-2000 scanner equipped with an open proportional counter tube. Measurement time, resolution and validity were compared for both scanners; (3) : For Ac, the quality control values of the radiochemical purity (RCP) were within the acceptance criteria 2 h after TLC development, regardless of when the TLC probe was taken.
View Article and Find Full Text PDFMolecules
January 2025
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
The overexpression of the epidermal growth factor receptor (EGFR) in certain types of prostate cancers and glioblastoma makes it a promising target for targeted radioligand therapy. In this context, pairing an EGFR-targeting peptide with the emerging theranostic pair comprising the Auger electron emitter cobalt-58m (Co) and the Positron Emission Tomography-isotope cobalt-55 (Co) would be of great interest for creating novel radiopharmaceuticals for prostate cancer and glioblastoma theranostics. In this study, GE11 (YHWYGYTPQNVI) was investigated for its EGFR-targeting potential when conjugated using click chemistry to N1-((triazol-4-yl)methyl)-N1,N2,N2-tris(pyridin-2-ylmethyl)ethane-1,2-diamine (TZTPEN).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou and 27 Neapoleos Street, 15341 Athens, Greece.
Due to their intriguing emission profile, Terbium-161 (Tb) radiopharmaceuticals seem to bring significant advancement in theranostic applications to cancer treatment. The combination of Tb with nanoscale brachytherapy as an approach for cancer treatment is particularly advantageous and promising. Herein, we propose the application of a hybrid nanosystem comprising gold decorated (Au@TADOTAGA) iron oxide nanoflowers as a form of injectable nanobrachytherapy for the local treatment of breast cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!